e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 45 (4) Nov. 2022 / JTAS-2519-2022


High Performance of Bacterial Strain Isolated from Bio-Extract for Cellulose Production

Pakjirat Singhaboot and Patarapong Kroeksakul

Pertanika Journal of Tropical Agricultural Science, Volume 45, Issue 4, November 2022


Keywords: Agricultural waste, bacterial cellulose, bio-extract, isolation, local microorganism

Published on: 4 November 2022

Bacterial cellulose (BC) producing bacterial strains were isolated from bio-extract (BE). Nine isolates that can produce BC in Hestrin–Schramm medium (HS medium) were identified. The BC production of these isolates was then investigated using agricultural waste as a raw material. The agricultural waste (banana, papaya, dragon fruit, and mango peels) was used as a carbon source for BC production. After incubation, the highest dry weight of BC reached 0.93±0.27 g/L, and 4.07±0.27 g/L was obtained from isolate BE073 in a medium containing mango and dragon fruit peels because the raw materials state is appropriate for bacterial growth. In a medium with papaya peel, the highest dry weight of BC was obtained from isolate BE052 at about 1.08±0.05 g/L. None of the strains was able to grow with the banana medium. However, all the isolate strains could grow and produce BC in the HS medium. The maximum dry weights of BC of 4.31±0.45 g/L, 4.23±0.13 g/L, and 4.21±0.25 g/L were obtained from isolates BE123, BE052, and BE073, respectively, and Acetobacter xylinum produced BC at 2.39±0.11 g/L. The structure and physical properties of BC produced from bacterial isolates using agricultural waste were characterized. It was similar to BC produced from HS medium and production from the reference strain A. xylinum . This study demonstrates the ability for BC production of bacterial strains isolated from bio-extract. It is also demonstrated that agricultural waste is a suitable and alternative carbon source for raw material in BC production.

  • Ali, O., Ramsubhag, A., & Jayaraman, J. (2021). Biostimulant properties of seaweed extracts in plants: Implication towards sustainable crop production. Plants, 10(3), 531.

  • Andritsou, V., de Melo, E. M., Tsouko, E., Ladakis, D., Maragkoudaki, S., Koutinas, A. A., & Matharu, A. S. (2018). Synthesis and characterization of bacterial cellulose from citrus based sustainable resources. ACS Omega, 3(8), 10365−10373.

  • Bodea, I. M., Cătunescu, G. M., Pop, C. R., Fiț, N. I., David, A. P., Dudescu, M. C., Stănilă, A., Rotar, A. M., & Beteg, F. I. (2022). Antimicrobial properties of bacterial cellulose films enriched with bioactive herbal extracts obtained by microwave-assisted extraction. Polymers, 14(7), 1435.

  • Boopathy, R., Beary, T., & Templet, P. J. (2001). Microbial decomposition of post-harvest sugarcane residue. Bioresource Technology, 79(1), 29–33.

  • Brückner, R., & Titgemeyer, F. (2002). Carbon catabolite repression in bacteria: Choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiology Letters, 209(2), 141–148.

  • Buldum, G., Bismarck, A., & Mantalaris, A. (2018) Recombinant biosynthesis of bacterial cellulose in genetically modified Escherichia coli. Bioprocess Biosystem Engineering, 41(2), 265–279.

  • Carrillo, F., Colom, X., Suñol, J. J., & Saurina, J. (2004) Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres. European Polymer Journal, 40(9), 2229–2234.

  • Chutichudet, P., & Chutichudet, B. (2022). Increase of coriander yield by using bio-extract from sensitive plant. Naresuan University Journal: Science and Technology, 3(3), 92-102.

  • Czaja, W., Krystynowicza, A., Bieleckia, S., R., & Brown Jr., R. M. (2006). Microbial cellulose — The natural power to heal wounds. Biomaterials, 27(2), 145-151.

  • Esa, F., Masrinda, S. M., & Rahman, N. A. (2014). Overview of bacterial cellulose production and application. Agriculture and Agricultural Science Procedia, 2, 113–119.

  • Fontana, J. D., De Souza, A. M., Fontana, C. K., Toriani, I. L., Moreschi, J. C., Gallotti, B. J., De Souza, S. J., Narcisco, G. P., Bichara, J. A., & Farah, L. F. X. (1990). Acetobacter cellulose pellicle as a temporary skin substitute. Applied Biochemistry and Biotechnology, 24, 253-264.

  • Godlewska, K., Roga, D., & Michalak, I., (2021). Plant extracts – Importance in sustainable agriculture. Italian Journal of Agronomy, 16(2).

  • Hadj Saadoun, J., Bertani, G., Levante, A., Vezzosi, F., Ricci, A., Bernini, V., & Lazzi, C. (2021). Fermentation of agri-food waste: A promising route for the production of aroma compounds. Foods, 10(4), 707.

  • Hestrin, S., & Schramm, M. (1954). Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochemical Journal, 58(2), 345-352.

  • Hirai, A., Tsuji, M., Yamamoto, H., & Horii, F. (1998). In situ crystallization of bacterial cellulose. III. Influences of different polymeric additives on the formation of microfibrils as revealed by transmission electron microscopy. Cellulose, 5, 201-213.

  • Huang, H.-C., Chen, L.-C., Lin, S.-B., Hsu, C.-P., & Chen, H.-H. (2010). In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation. Bioresource Technology, 101(15), 6084–6091.

  • Ishikawa, M. (1928). Influence of carbohydrates on bacterial decomposition of urea. The Journal of Infectious Diseases, 43(1), 67–80.

  • Kamla, N., Limpinuntana, V., Ruaysoongnern, S., & Bell, W. R. (2007). Role of microorganisms, soluble N and C compounds in fermented bio-extract on microbial biomass C, N and cowpea growth. Khon Kaen Agriculture Journal, 35(4), 477-486.

  • Kamla, N., Limpinuntana, V., Ruaysoongnern, S., & Bell, W. R. (2008). Role of fermented bio-extracts produced by farmers on growth, yield and nutrient contents in cowpea (Vigna unguiculata (L.) Walp.) in Northeast Thailand. Biological Agriculture and Horticulture, 25(4), 353-368.

  • Kim, H., & Kim, H. R. (2022). Production of coffee-dyed bacterial cellulose as a bio-leather and using it as a dye adsorbent. PLOS One, 17(3), e0265743.

  • Kumbhar, J. V., Rajwade, J. M., & Paknikar, K. M. (2015). Fruit peels support higher yield and superior quality bacterial cellulose production. Applied Microbiology Biotechnology, 99, 6677–6691.

  • Kuo, C.-H., Huang, C.-Y., Shieh C.-J., David Wang, H.-M., & Tseng, C.-Y. (2017). Hydrolysis of orange peel with cellulase and pectinase to produce bacterial cellulose using Gluconacetobacter xylinus. Waste Biomass Valorization, 10, 85-93.

  • Lemnaru, G.-M., Truşcă, R. D., Ilie, C.-I., Țiplea, R. E., Ficai, D., Oprea, O., Stoica-Guzun, A., Ficai, A., & Dițu, L.-M. (2020). Antibacterial activity of bacterial cellulose loaded with bacitracin and amoxicillin: In vitro studies. Molecules, 25(18), 4069.

  • Mavani, H. A. K., Tew, I. M., Wong, L., Yew, H. Z., Mahyuddin, A., Ghazali, R. A., & Pow, E. H. P. (2020). Antimicrobial efficacy of fruit peels eco-enzyme against Enterococcus faecalis: An in vitro study. International Journal of Environmental Research and Public Health, 17(14), 5107.

  • Mazzucotelli, C. A., Ponce, A. G., Kotlar, C. E., & Moreira, M. D. R. (2013). Isolation and characterization of bacterial strains with a hydrolytic profile with potential use in bioconversion of agroindustial by-products and waste. Food Science and Technology, 33(2), 295-303.

  • Molina-Ramírez, C., Castro, M., Osorio, M., Torres-Taborda, M., Gómez, B., Zuluaga, R., Gómez, C., Gañán, P., Rojas, O. J., & Castro, C. (2017). Effect of different carbon sources on bacterial nanocellulose production and structure using the low pH resistant strain Komagataeibacter medellinensis. Materials, 10(6), 639.

  • Moukamnerd, C., Ounmuang., K., Konboa, K., & Insomphun, C. (2020). Bacterial cellulose production by Komagataeibacter nataicola TISTR 2661 by agro-waste as a carbon source. Chiang Mai Journal of Science, 47, 16-27.

  • Nishizawa, T., Tago, K., Uei, Y., Ishii, S., Isobe, K., Otsuka, S., & Senoo, K. (2012). Advantages of functional single-cell isolation method over standard agar plate dilution method as a tool for studying denitrifying bacteria in rice paddy soil. AMB Express, 2, 50.

  • Pandit, S., Savla, N., Sonawane, J. M., Muh’d Sani, A., Gupta, P. K., Mathuriya, A. S., Rai, A. K., Jadhav, D. A., Jung, S. P., & Prasad, R. (2021). Agriculture waste and wastewater as feedstock for bioelectricity generation using microbial fuel cell: Recent advance. Fermentation, 7(3), 169.

  • Pathanapibul, P. (2003). The efficiency of bioextract on some kinds of vegetable in hydroponic system [Unpublished Master’s thesis]. Kasetsart University.

  • Rebelo, A., Archer, A. J., Chen, X., Liu, C., Yang, G., & Liu, Y. (2018). Dehydration of bacterial cellulose and the water content effects on its viscoelastic and electrochemical properties. Science and Technology of Advanced Materials, 19(1), 203–211.

  • Rojas-Flores, S., Pérez-Delgado, O., Nazario-Naveda, R., Rojales-Alfaro, H., Benites, S. M., Cruz-Noriega, M. D. L., & Otiniano, N. M. (2021). Potential use of papaya waste as a fuel for bioelectricity generation. Processes, 9(10), 1799.

  • Shim, E., & Kim, H. R. (2018). Coloration of bacterial cellulose using in situ and ex situ methods. Textile Research Journal, 89(7), 1297-1310.

  • Smith, A. C., & Hussey, M. A. (2005). Gram stain protocol. American Society for Microbiology.

  • Ul-Islam, M., Khan, T., & Park, J. K. (2012). Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydrate Polymer, 88(2), 596-603.

  • United States Department of Agriculture. (2019). Papayas, raw. USDA.

  • Wong, S.-S., Kasapis, S., & Tan, Y. M. (2009). Bacterial and plant cellulose modification using ultrasound irradiation. Carbohydrate Polymer, 77(2), 280–287.

ISSN 1511-3701

e-ISSN 2231-8542

Article ID


Download Full Article PDF

Share this article

Related Articles