e-ISSN 2231-8542
ISSN 1511-3701
Bashir Sani, Md. Sabri Yusoff, Ina Salwany Md Yasin, Murni Marlina Abd Karim, Mohd Fuad Matori, Mohammad Noor Azmai Amal, Tilusha Manchanayake, Amir-Danial Zahaludin and Aslah Mohamad
Pertanika Journal of Tropical Agricultural Science, Volume 46, Issue 2, May 2023
DOI: https://doi.org/10.47836/pjtas.46.2.01
Keywords: Aeromonas hydrophila, LD50, pangasius catfish, Pangasius nasutus, pathogenicity
Published on: 16 May 2023
Pangasius catfish, Pangasius nasutus, is a promising candidate for aquaculture due to its high market value. However, the presence of pathogenic bacteria in Aeromonas hydrophila is a major concern in P. nasutus farming in this country. This study determines the pathogenicity of A. hydrophila in P. nasutus. A total of 80 P. nasutus juveniles were intraperitoneally injected with 0, 103, 105, and 107 CFU mL-1 of A. hydrophila and monitored until 240 hr. The infected moribund fish’s kidneys, livers, and spleens were collected for histopathological analysis. The LD50-240hr value was found at 0.8 × 104 CFU/ml of A. hydrophila. The percentage of mortality in 0, 103, 105, and 107 CFU/ml infected groups were found to be at 0, 40, 60, and 90%, respectively. The infected fish showed congestion at the base of the fin, ascites, enlarged gall bladder, and swollen spleen. It is the earliest report on A. hydrophila’s pathogenicity in high-value native fish, P. nasutus.
Abdelhamed, H., Ibrahim, I., Nho, S. W., Banes, M. M., Wills, R. W., Karsi, A., & Lawrence, M. L. (2017). Evaluation of three recombinant outer membrane proteins, OmpA1, Tdr, and TbpA, as potential vaccine antigens against virulent Aeromonas hydrophila infection in channel catfish (Ictalurus punctatus). Fish and Shellfish Immunology, 66, 480–486. https://doi.org/10.1016/j.fsi.2017.05.043
Anjur, N., Sabran, S. F., Daud, H. M., & Othman, N. Z. (2021). An update on the ornamental fish industry in Malaysia: Aeromonas hydrophila-associated disease and its treatment control. Veterinary World, 14(5), 1143–1152. https://doi.org/10.14202/vetworld.2021.1143-1152
Azzam-Sayuti, M., Ina-Salwany, M. Y., Zamri-Saad, M., Annas, S., Yusof, M. T., Monir, M. S., Mohamad, A., Muhamad-Sofie, M. H. N., Lee, J. Y., Chin, Y. K., Amir-Danial, Z., Asyiqin, A., Lukman, B., Liles, M. R., & Amal, M. N. A. (2021). Comparative pathogenicity of Aeromonas spp. in cultured red hybrid tilapia (Oreochromis niloticus × O. mossambicus). Biology, 10(11), 1192. https://doi.org/10.3390/biology10111192
Azzam-Sayuti, M., Ina-Salwany, M. Y., Zamri-saad, M., Yusof, M. T., Annas, S., Najihah, M. Y., Liles, M. R., Monir, M. S., Zaidi, Z., Amal, M. N. A., Ina-salwany, Y., Zamri-saad, M., Monir, S., Zaidi, Z., Noor, M., & Amal, A. (2021). The prevalence, putative virulence genes and antibiotic resistance profiles of Aeromonas spp. isolated from cultured freshwater fishes in peninsular Malaysia. Aquaculture, 540, 736719. https://doi.org/10.1016/j.aquaculture.2021.736719
Bøgwald, J., & Dalmo, R. A. (2019). Review on immersion vaccines for fish: An update 2019. Microorganisms, 7(12), 627. https://doi.org/10.3390/microorganisms7120627
Chen, N., Jiang, J., Gao, X., Li, X., Zhang, Y., Liu, X., Yang, H., Bing, X., & Zhang, X. (2018). Histopathological analysis and the immune related gene expression profiles of mandarin fish (Siniperca chuatsi) infected with Aeromonas hydrophila. Fish and Shellfish Immunology, 83, 410–415. https://doi.org/10.1016/j.fsi.2018.09.023
de Oliveira, S. R., de Souza, R. T. Y. B., Brasil, E. M., de Andrade, J. I. A., da Silva Santiago Nunes, É., Ono, E. A., & Affonso, E. G. (2011). LD50 of the bacteria Aeromonas hydrophila to matrinxã, Brycon amazonicus. Acta Amazonica, 41(2), 321–326. https://doi.org/10.1590/S0044-59672011000200019
Dias, M. K. R., Sampaio, L. S., Proietti, A. A., Yoshioka, E. T. O., Rodrigues, D. P., Rodriguez, A. F. R., Ribeiro, R. A., Faria, F. S. E. D. V., Ozório, R. O. A., & Tavares-Dias, M. (2016). Lethal dose and clinical signs of Aeromonas hydrophila in Arapaima gigas (Arapaimidae), the giant fish from Amazon. Veterinary Microbiology, 188, 12–15. https://doi.org/10.1016/j.vetmic.2016.04.001
Doan, H. V., Suksri, A., & Pensée, L. (2013). The LD50 of Asian catfish (Pangasius bocourti, Sauvage 1870) challenge to pathogen Aeromonas hydrophila FW52 strain. Pensee Journal, 75(10), 287–293.
Dong, H. T., Techatanakitarnan, C., Jindakittikul, P., Thaiprayoon, A., Taengphu, S., Charoensapsri, W., Khunrae, P., Rattanarojpong, T., & Senapin, S. (2017). Aeromonas jandaei and Aeromonas veronii caused disease and mortality in Nile tilapia, Oreochromis niloticus (L.). Journal of Fish Diseases, 40(10), 1395–1403. https://doi.org/10.1111/jfd.12617
Hashim, R. B., Jamil, E. F., Zulkipli, F. H., & Daud, J. M. (2015). Fatty acid compositions of silver catfish, Pangasius sp. farmed in several rivers of Pahang, Malaysia. Journal of Oleo Science, 64(2), 205–209. https://doi.org/10.5650/jos.ess14191
Hayati, R. L., & Prihanto, A. A. (2020). Effects of polysaccharides-crude extract from Candida sp. OCL1 on hematological parameters of Aeromonas hydrophila-infected catfish (Pangasius pangasius). In IOP Conference Series: Earth and Environmental Science (Vol. 493, No. 1, p. 012016). IOP Publishing. https://doi.org/10.1088/1755-1315/493/1/012016
Jaapar, M. Z., Yusof, M. F., Yusof, H. M., Ramli, S. F., Mohamad, S. N., & Jamari, Z. (2021). Effect of different salinity concentrations on hatching rate and larval development of Patin buah, Pangasius nasutus (Bleeker, 1863). Journal of Applied Aquaculture, 34(3), 693-701. https://doi.org/10.1080/10454438.2021.1885556
Jamaludin, F. I., & Ting, S. Y. (2021). Penilaian potensi bahan mentah tempatan dalam formulasi makanan ikan patin [Assessment of the potential of local raw materials in the formulation of catfish food]. Buletin Teknologi MARDI, 28(2), 145–152.
Jiang, X., Zhang, C., Zhao, Y., Kong, X., Pei, C., Li, L., Nie, G., & Li, X. (2016). Immune effects of the vaccine of live attenuated Aeromonas hydrophila screened by rifampicin on common carp (Cyprinus carpio L.). Vaccine, 34(27), 3087–3092. https://doi.org/10.1016/j.vaccine.2016.04.075
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547-1549. https://doi.org/10.1093/molbev/msy096
Laith, A. R., & Najiah, M. (2014). Aeromonas hydrophila: Antimicrobial susceptibility and histopathology of isolates from diseased catfish, Clarias gariepinus (Burchell). Journal of Aquaculture Research and Development, 5(2), 1000215. https://doi.org/10.4172/2155-9546.1000215
Le, T. S., Nguyen, T. H., Vo, H. P., Doan, V. C., Nguyen, H. L., Tran, M. T., Tran, T. T., Southgate, P. C., & İpek Kurtböke, D. (2018). Protective effects of bacteriophages against Aeromonas hydrophila species causing Motile Aeromonas Septicemia (MAS) in striped catfish. Antibiotics, 7(1), 16. https://doi.org/10.3390/antibiotics7010016
Mansor, N. N., Khan Chowdhury, A. J., Ridzuan, M. S., Mohd Khalid, H. N., & Mahmood, S. (2020). Epidemiology of emerging diseases and disorder in cage cultured Pangasius spp. in Pahang, Malaysia. International Islamic University Malaysia Repository. http://irep.iium.edu.my/78064/
Matusin, S. B. (2015). Molecular characterization of Aeromonas hydrophila and development of recombinant cells vaccine expressing outer membrane proteins against its in African catfish (Clarias gariepinus) [Unpublished Master’s thesis]. Universiti Putra Malaysia.
Mazumder, A., Choudhury, H., Dey, A., & Sarma, D. (2021). Isolation and characterization of two virulent Aeromonads associated with haemorrhagic septicaemia and tail-rot disease in farmed climbing perch Anabas testudineus. Scientific Reports, 11, 5826. https://doi.org/10.1038/s41598-021-84997-x
Rafi, A. I. A., Hanan, M. Y., Othman, A. baihaqi, Jaapar, M. Z., & Baharuddin, H. (2022). Potential usage of Sirehmax™, a piper betle extract, for controlling fish pathogen prevalence in domesticated shark fingerlings, Pangasius nasutus (Bleeker, 1863). Fishmail, 31, 32–36.
Rahman, A. A. N., Mansour, D. A., Abd El-Rahman, G. I., Elseddawy, N. M., Zaglool, A. W., Khamis, T., Mahmoud, S. F., & Mahboub, H. H. (2022). Imidacloprid toxicity in Clarias gariepinus: Protective role of dietary Hyphaene thebaica against biochemical and histopathological disruption, oxidative stress, immune genes expressions, and Aeromonas sobria infection. Aquaculture, 555, 738170. https://doi.org/10.1016/j.aquaculture.2022.738170
Reed, L. J., & Muench, H. (1938). A simple method of estimating fifty per cent endpoints. American Journal of Epidemiology, 27(3), 493–497. https://doi.org/10.1093/oxfordjournals.aje.a118408
Saharia, P., Pokhrel, H., Kalita, B., Hussain, I. A., & Islam, S. (2018). Histopathological changes in Indian Major Carp, Labeo rohita (Hamilton), experimentally infected with Aeromonas hydrophila associated with hemorrhagic septicemia of Central Brahmaputra valley of Assam, India. Journal of Entomology and Zoology Studies, 6(5), 6–11.
Samayanpaulraj, V., Velu, V., & Uthandakalaipandiyan, R. (2019). Microbial pathogenesis determination of lethal dose of Aeromonas hydrophila Ah17 strain in snake head fish Channa striata. Microbial Pathogenesis, 127, 7–11. https://doi.org/10.1016/j.micpath.2018.11.035
Sarker, J., & Faruk, M. (2016). Experimental infection of Aeromonas hydrophila in pangasius. Progressive Agriculture, 27(3), 392–399. https://doi.org/10.3329/pa.v27i3.30836
Sirimanapong, W., Thompson, K. D., Kledmanee, K., Thaijongrak, P., Collet, B., Ooi, E. L., & Adams, A. (2014). Optimisation and standardisation of functional immune assays for striped catfish (Pangasianodon hypophthalmus) to compare their immune response to live and heat killed Aeromonas hydrophila as models of infection and vaccination. Fish and Shellfish Immunology, 40(2), 374–383. https://doi.org/10.1016/j.fsi.2014.07.021
Tahapari, E., Darmawan, J., & Abdurachman, M. L. (2020). Nuclear DNA content variation within four species of Asian catfish of family Pangasidae and their two interspecific hybrids by flow cytometry. Jurnal Akuakultur Indonesia, 19(2), 142–152. https://doi.org/10.19027/jai.19.2.142-152
Tartor, Y. H., EL-Naenaeey, E.-S. S. Y., Abdallah, H. M., Samir, M., Yassen, M. M., & Abdelwahab, A. M. (2021). Virulotyping and genetic diversity of Aeromonas hydrophila isolated from Nile tilapia (Oreochromis niloticus) in aquaculture farms in Egypt. Aquaculture, 541, 736781. https://doi.org/10.1016/j.aquaculture.2021.736781
Wohlsen, T., Bates, J., Vesey, G., Robinson, W. A., & Katouli, M. (2006). Evaluation of the methods for enumerating coliform bacteria from water samples using precise reference standards. Letters in Applied Microbiology, 42(4), 350–356. https://doi.org/10.1111/j.1472-765X.2006.01854.x
Yusof, F., & Nakajima, M. (2019). Morphological tool to elucidate two closely related pangasius catfish. International Journal of Allied Health Sciences, 3(2), 967–975.
Zhang, D., Xu, D.-H., & Beck, B. (2019). Analysis of agglutinants elicited by antiserum of channel catfish immunized with extracellular proteins of virulent Aeromonas hydrophila. Fish and Shellfish Immunology, 86, 223–229. https://doi.org/10.1016/j.fsi.2018.11.033
Zhang, D., Xu, D.-H., & Shoemaker, C. (2016). Experimental induction of motile Aeromonas septicemia in channel catfish (Ictalurus punctatus) by waterborne challenge with virulent Aeromonas hydrophila. Aquaculture Reports, 3, 18–23. https://doi.org/10.1016/j.aqrep.2015.11.003
Zulkiflee, S. Z., Yusof, M. F., Nor Azlina, A. R., & Rostam, M. A. (2020). Moisture, ash and fat composition of Pangasianodon hypophthalmus (Sauvage, 1878) and Pangasius nasutus (Bleeker, 1863). International Journal of Allied Health Sciences, 4(3), 1486–1495.
ISSN 1511-3701
e-ISSN 2231-8542