Home / Regular Issue / JTAS Vol. 47 (1) Feb. 2024 / JTAS-2763-2023


Pathogenicity Evaluation of Low Pathogenic Avian Influenza (H9N2) Virus Isolated from Layer Flocks in Malaysia in Specific-pathogen-free Chickens

Erandi Maheshika Gunasekara, Abdullahi Abdullahi Raji, Siti Nor Azizah Mahamud, Mohd Hair Bejo, Aini Ideris and Abdul Rahman Omar

Pertanika Journal of Tropical Agricultural Science, Volume 47, Issue 1, February 2024

DOI: https://doi.org/10.47836/pjtas.47.1.12

Keywords: Clinical sign, LPAI H9N2 virus, pathogenicity, SPF chicken, viral load

Published on: 23 Febuary 2024

Infection with the low pathogenic avian influenza (LPAI) H9N2 virus has been reported worldwide and poses a health risk to poultry as well as to global health due to its ability to re-assort with other avian influenza viruses. Besides, the silent spread of the H9N2 infection causes significant economic damage to the poultry industry. Recently, Malaysia reported major outbreaks of LPAI H9N2 in commercial layer chicken flocks. Genome sequence analysis indicated that the predominant LPAI H9N2 viruses are of the Y280/BJ94-like lineages. However, the pathogenicity of the virus has not been evaluated. This study determines the pathogenicity of LPAI H9N2 strain UPM994/2018, previously isolated from commercial layer chickens, in one-week-old specific-pathogen-free (SPF) chickens. Clinical signs such as ruffled feathers, mild tracheal rales, facial edema, sero-nasal discharge, and diarrhea were observed from days 6 to 10 post-inoculation (PI). However, no mortality was recorded. Based on a real-time polymerase chain reaction assay, the viruses can be detected in the lungs, trachea, and kidneys of the inoculated chickens on the second day, increased until day 10, then declined at day 16 PI. However, swab samples collected from the oropharyngeal and cloacal regions remain positive from day 2 to day 14 PI, with the highest viral load detected at day 10 PI. In conclusion, although the virus is an LPAI, it is pathogenic in SPF chickens, causing respiratory, gastrointestinal, and renal-associated illnesses.

  • Aamir, U. B., Wernery, U., Ilyushina, N., & Webster, R. G. (2007). Characterization of avian H9N2 influenza viruses from United Arab Emirates 2000 to 2003. Virology, 361(1), 45–55. https://doi.org/10.1016/j.virol.2006.10.037

  • Awuni, J. A., Bianco, A., Dogbey, O. J., Fusaro, A., Yingar, D. T., Salviato, A., Ababio, P. T., Milani, A., Bonfante, F., & Monne, I. (2019). Avian influenza H9N2 subtype in Ghana: Virus characterization and evidence of co-infection. Avian Pathology, 48(5), 470–476. https://doi.org/10.1080/03079457.2019.1624687

  • Baron, J., Tarnow, C., Mayoli-Nüssle, D., Schilling, E., Meyer, D., Hammami, M., Schwalm, F., Steinmetzer, T., Guan, Y., Garten, W., Klenk, H.-D., & Böttcher-Friebertshäuser, E. (2013). Matriptase, HAT, and TMPRSS2 activate the hemagglutinin of H9N2 influenza A viruses. Journal of Virology, 87(3), 1811–1820. https://doi.org/10.1128/jvi.02320-12

  • Bijanzad, P., Momayez, R., Fard, M. H. B., Hablolvarid, M. H., Mahmoodzadeh, M., Moghaddam, A. R. J., Kaboli, K., Azizpour, A., & Eshratabadi, F. (2013). Study on clinical aspects of SPF chickens infected with H9N2 subtype of avian influenza virus. Annals of Biological Research, 4(3), 81–85.

  • Bóna, M., Kiss, I., Dénes, L., Szilasi, A., & Mándoki, M. (2023). Tissue tropism of H9N2 low-pathogenic avian influenza virus in broiler chickens by immunohistochemistry. Animals, 13(6), 1052. https://doi.org/10.3390/ani13061052

  • Cattoli, G., Drago, A., Maniero, S., Toffan, A., Bertoli, E., Fassina, S., Terregino, C., Robbi, C., Vicenzoni, G., & Capua, I. (2004). Comparison of three rapid detection systems for type A influenza virus on tracheal swabs of experimentally and naturally infected birds. Avian Pathology, 33(4), 432–437. https://doi.org/10.1080/03079450410001724058

  • Feldman, A. T., & Wolfe, D. (2014). Tissue processing and hematoxylin and eosin staining. In C. Day (Ed.), Histopathology: Methods in molecular biology (Vol 1180, pp. 31-43). Humana Press. https://doi.org/10.1007/978-1-4939-1050-2_3

  • Gharaibeh, S. (2008). Pathogenicity of an avian influenza virus serotype H9N2 in chickens. Avian Diseases, 52(1), 106–110. https://doi.org/10.1637/8108-090907-reg

  • Gu, Y., Zuo, X., Zhang, S., Ouyang, Z., Jiang, S., Wang, F., & Wang, G. (2021). The mechanism behind influenza virus cytokine storm. Viruses, 13(7), 1362. https://doi.org/10.3390/v13071362

  • Guan, Y., Shortridge, K. F., Krauss, S., Chin, P. S., Dyrting, K. C., Ellis, T. M., Webster, R. G., & Peiris, M. (2000). H9N2 influenza viruses possessing H5N1-like internal genomes continue to circulate in poultry in southeastern China. Journal of Virology, 74(20), 9372–9380. https://doi.org/10.1128/jvi.74.20.9372-9380.2000

  • Gunasekara, E. (2021). Genome characterisation and pathogenicity study of low pathogenic avian influenza virus subtype H9N2 isolated in Malaysia [Unpublished Master’s thesis]. Universiti of Putra Malaysia.

  • Guo, Y. J., Krauss, S., Senne, D. A., Mo, I. P., Lo, K. S., Xiong, X. P., Norwood, M., Shortridge, K. F., Webster, R. G., & Guan, Y. (2000). Characterization of the pathogenicity of members of the newly established H9N2 influenza virus lineages in Asia. Virology, 267(2), 279–288. https://doi.org/10.1006/viro.1999.0115

  • Hablolvarid, M. H., Haghdost, S., I, Pourbakhsh, S. A., & Gholami, M. R. (2004). Histopathological study of intratracheally inoculated A/Chicken/Iran/259/1998 (H9N2) influenza virus in chicken. Archives of Razi, 58(1), 51–62. https://doi.org/10.22092/ARI.2004.103825

  • Hassan, M. S. H., & Abdul-Careem, M. F. (2020). Avian viruses that impact table egg production. Animals, 10(10), 1747. https://doi.org/10.3390/ani10101747

  • Iqbal, M., Yaqub, T., Mukhtar, N., Shabbir, M. Z., & McCauley, J. W. (2013). Infectivity and transmissibility of H9N2 avian influenza virus in chickens and wild terrestrial birds. Veterinary Research, 44, 100. https://doi.org/10.1186/1297-9716-44-100

  • Lai, V. D., Kim, J, W., Choi, Y, Y., Kim, J.-J., So, H.-H., & Mo, J. (2021). First report of field cases of Y280-like LPAI H9N2 in South Korean poultry farms: Pathological findings and genetic characterization. Avian Pathology, 50(4), 327–328. https://doi.org/10.1080/03079457.2021.1929833

  • Li, X., Sun, J., Lv, X., Wang, Y., Li, Y., Li, M., Liu, W., Zhi, M., Yang, X., Fu, T., Ma, P., Li, Y., Zhou, X., Li, Y., Yang, G., Chen, G., Zhang, J., Zheng, H., Zhang, G., Chai, H. (2020). Novel reassortant avian influenza A (H9N2) virus isolate in migratory waterfowl in Hubei Province, China. Frontiers in Microbiology, 11, 220. https://doi.org/10.3389/fmicb.2020.00220

  • Mahana, O., Arafa, A. S., Erfan, A., Hussein, H. A., & Shalaby, M. A. (2019). Pathological changes, shedding pattern and cytokines responses in chicks infected with avian influenza-H9N2 and/or infectious bronchitis viruses. Virus Disease, 30, 279–287. https://doi.org/10.1007/s13337-018-00506-1

  • Mase, M., Eto, M., IMai, K., Tsukamoto, K., & Yamaguchi, S. (2007). Characterization of H9N2 influenza A viruses isolated from chicken products imported into Japan from China. Epidemiology and Infection, 135(3), 386–391. https://doi.org/10.1017/S0950268806006728

  • Matrosovich, M. N., Krauss, S., & Webster, R. G. (2001). H9N2 influenza A viruses from poultry in Asia have human virus-like receptor specificity. Virology, 162(281), 156–162. https://doi.org/10.1006/viro.2000.0799

  • Mo, J., Youk, S., Pantin-Jackwood, M. J., Suarez, D. L., Lee, D. H., Killian, M. L., Bergeson, N. H., & Spackman, E. (2021). The pathogenicity and transmission of live bird market H2N2 avian influenza viruses in chickens, Pekin ducks, and guinea fowl. Veterinary Microbiology, 260, 109180. https://doi.org/10.1016/j.vetmic.2021.109180

  • Mosleh, N., Dadras, H., & Mohammadi, A. (2009). Evaluation of H9N2 avian influenza virus dissemination in various organs of experimentally infected broiler chickens using RT-PCR. Iranian Journal of Veterinary Research, 10(1), 12–20. https://doi.org/10.22099/IJVR.2009.1083

  • Nili, H., & Asasi, K. (2003). Avian influenza (H9N2) outbreak in Iran. Avian Diseases, 47(S3), 828–831. https://doi.org/10.1637/0005-2086-47.s3.828

  • Pantin-Jackwood, M. J., Smith, D. M., Wasilenko, J. L., & Spackman, E. (2012). Low pathogenicity avian influenza viruses infect chicken layers by different routes of inoculation. Avian Diseases, 56(2), 276–281. https://doi.org/10.1637/9950-092711-Reg.1

  • Peacock, T. P., James, J., Sealy, J. E., & Iqbal, M. (2019). A global perspective on H9N2 avian influenza virus. Viruses, 11(7), 620. https://doi.org/10.3390/v11070620

  • Reed, L. J., & Muench, H. (1938). A simple method of estimating fifty percent endpoints. American Journal of Epidemiology, 27(3), 493–497. https://doi.org/10.1093/oxfordjournals.aje.a118408

  • Slemons, R. D., & Swayne, D. E. (1990). Replication of a waterfowl-origin influenza virus in the kidney and intestine of chickens. Avian Diseases, 34(2), 277–284. https://doi.org/10.2307/1591409

  • Song, Y., Zhang, Y., Chen, L., Zhang, B., Zhang, M., Wang, J., Jiang, Y., Yang, C., & Jiang, T. (2019). Genetic characteristics and pathogenicity analysis in chickens and mice of three H9N2 avian influenza viruses. Viruses, 11(12), 1127. https://doi.org/10.3390/v11121127

  • Spackman, E., Senne, D. A., Bulaga, L. L., Myers, T. J., Perdue, M. L., Garber, L. P., Lohman, K., Baum, L. T., & Suarez, D. L. (2005). Development of real-time RT-PCR for the detection of avian influenza virus. Avian Diseases, 49(2), 313. https://doi.org/10.1637/7272-090704R.1

  • Stech, J., & Mettenleiter, T. C. (2013). Virulence determinants of high-pathogenic avian influenza viruses in gallinaceous poultry. Future Virology, 8(5), 459–468. https://doi.org/10.2217/fvl.13.27

  • Su, S., Bi, Y., Wong, G., Gray, G. C., Gao, G. F., & Li, S. (2015). Epidemiology, evolution, and recent outbreaks of avian influenza virus in China. Journal of Virology, 89(17), 8671–8676. https://doi.org/10.1128/jvi.01034-15

  • Sun, Y., Hu, Z., Zhang, X., Chen, M., Wang, Z., Xu, G., Bi, Y., Tong, Q., Wang, M., Sun, H., Pu, J., Iqbal, M., & Liu, J. (2020). An R195K mutation in the PA-X protein increases the virulence and transmission of influenza A virus in mammalian hosts. Journal of Virology, 94(11), e01817-19. https://doi.org/10.1128/jvi.01817-19

  • Syamsiah, A. S., Leow, B. L., Faizul Fikri, M. Y., Muhammad Redzwan, S., Ong, G, H., & Faizah Hanim, M. S. (2019). Genetic analysis of H9N2 avian influenza viruses isolated from chickens in Malaysia from 2015-2018. Malaysian Journal of Veterinary Research, 10(2), 79–92.

  • Thuy, D. M., Peacock, T. P., Bich, V. T. N., Fabrizio, T., Hoang, D. N., Tho, N. D., Diep, N. T., Nguyen, M., Hoa, L. N. M., Trang, H. T. T., Choisy, M., Inui, K., Newman, S., vu Trung, N., van Doorn, R., To, T. L., Iqbal, M., & Bryant, J. E. (2016). Prevalence and diversity of H9N2 avian influenza in chickens of Northern Vietnam, 2014. Infection, Genetics and Evolution, 44, 530–540. https://doi.org/10.1016/j.meegid.2016.06.038

  • Umar, S., Guerin, J. L., & Ducatez, M. F. (2017). Low pathogenic avian influenza and coinfecting pathogens: A review of experimental infections in avian models. Avian Diseases, 61(1), 3–15. https://doi.org/10.1637/11514-101316-Review

  • Wang, J., Tang, C., Wang, Q., Li, R., Chen, Z., Han, X., Wang, J., & Xu, X. (2015). Apoptosis induction and release of inflammatory cytokines in the oviduct of egg-laying hens experimentally infected with H9N2 avian influenza virus. Veterinary Microbiology, 177(3–4), 302–314. https://doi.org/10.1016/j.vetmic.2015.04.005

  • World Organization for Animal Health. (2023). Avian influenza (including infection with high pathogenicity avian influenza viruses). https://www.woah.org/fileadmin/Home/eng/Health_standards/tahm/3.03.04_AI.pdf

  • Yang, Y., Li, S., Wong, G., Ma, S., Xu, Z., Zhao, X., Li, H., Xu, W., Zheng, H., Lin, J., Zhao, Q., Liu, W., Liu, Y., Gao, G. F., & Bi, Y. (2018). Development of a quadruple qRT-PCR assay for simultaneous identification of highly and low pathogenic H7N9 avian influenza viruses and characterization against oseltamivir resistance. BMC Infectious Diseases, 18, 406. https://doi.org/10.1186/s12879-018-3302-7

  • Youk, S.-S., Lee, D.-H., Jeong, J.-H., Pantin-Jackwood, M. J., Song, C.-S., & Swayne, D. E. (2020). Live bird markets as evolutionary epicentres of H9N2 low pathogenicity avian influenza viruses in Korea. Emerging Microbes and Infections, 9(1), 616–627. https://doi.org/10.1080/22221751.2020.1738903

ISSN 1511-3701

e-ISSN 2231-8542

Article ID


Download Full Article PDF

Share this article

Related Articles