PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 46 (4) Nov. 2023 / JTAS-2690-2023

 

Gibberellic Acid and Tween 20 Increases Napier Grass Tolerance to Synthetic Pyrethroid

Khanitta Somtrakoon, Wilailuck Khompun, Chonlada Dechakiatkrai Theerakarunwong and Waraporn Chouychai

Pertanika Journal of Tropical Agricultural Science, Volume 46, Issue 4, November 2023

DOI: https://doi.org/10.47836/pjtas.46.4.20

Keywords: Cypermethrin, deltamethrin, gibberellin, Napier grass, Tween 20

Published on: 27 November 2023

The wide use of synthetic pyrethroids has increased their contamination in agricultural soil, so removing this pollutant from agricultural sites is necessary. Phytoremediation offers promise for agricultural soil decontamination as it is an environmentally friendly and green method. In this study, Napier grass cv. Pakchong 1 (Pennisetum purpureum x Pennisetum Americanum), cuttings with or without soaking in gibberellic acid (GA3) with and without the surfactant Tween 20, were planted in synthetic pyrethroid contaminated soil for 20 days. The results showed that the synthetic pyrethroid reduced shoot and root growth, reduced the pigment content and increased the proline content in the leaves of Napier grass cv. Pakchong 1, and GA3 soaking alone was the most appropriate method to alleviate synthetic pyrethroid phytotoxicity. However, planting with Napier grass cv. Pakchong 1 did not enhance soil biodegradation of cypermethrin, deltamethrin, permethrin, and fenvalerate. Napier grass did not accumulate synthetic pyrethroids within the shoot and root tissue, as the bioconcentration factor for each compound was below 1. Indigenous soil microorganisms caused a decrease in these synthetic pyrethroids. Napier grass could tolerate and grow well in pyrethroid-contaminated soil, and a method to enhance the plant’s capacity to remove pyrethroid from the soil should be developed.

  • Aioub, A. A. A., Li, Y., Qie, X., Zhang, X., & Hu, Z. (2019). Reduction of soil contamination by cypermethrin residues using phytoremediation with Plantago major and some surfactants. Environmental Science Europe, 31, 26. https://doi.org/10.1186/s12302-019-0210-4

  • Akbar, S., Sultan, S., & Kertesz, M. (2015). Determination of cypermethrin degradation potential of soil bacteria along with plant growth-promoting characteristics. Current Microbiology, 70, 75-84. https://doi.org/10.1007/s00284-014-0684-7

  • Alagić, S. Č., Maluckov, B. S., & Radojičić, V. B. (2015). How can plants manage polycyclic aromatic hydrocarbons? May these effects represent a useful tool for an effective soil remediation? A review. Clean Technology and Environmental Policy, 17, 597–614. https://doi.org/10.1007/s10098-014-0840-6

  • Alvarenga, A. C., Sampaio, R. A., Pinho, G. P., Cardoso, P. H. S., de P. Sousa, I., & Barbosa, M. H. C. (2017). Phytoremediation of chlorobenzenes in sewage sludge cultivated with Pennisetum purpureum at different times. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(8), 573-578. https://doi.org/10.1590/1807-1929/agriambi.v21n8p573-578

  • Ariyani, M., Pitoi, M. M., Koesmawati, T. A., Maulana, H., Endah, E. S., & Yusiasih, R. (2020). Pyrethroid residues on tropical soil of an Indonesian tea plantation: Analytical method development, monitoring, and risk assessment. Sustainable Environment Research, 30, 15. https://doi.org/10.1186/s42834-020-00055-7

  • Aveek, S., Jyoti, P. S., Jaydeb, J., & Somashree, M. (2009). Effect of cypermethrin on growth, cell division and photosynthetic pigment content in onion, maize and grass pea. Research Journal of Chemistry and Environment, 23(8), 126-129.

  • Ayotamuno, J. M., Kogbara, R. B., & Egwuenum, P. N. (2006). Comparison of corn and elephant grass in the phytoremediation of a petroleum-hydrocarbon-contaminated agricultural soil in Port Harcourt, Nigeria. Journal of Food, Agriculture and Environment, 4(3&4), 218-222.

  • Bobor, L. O., & Omosefe, B. E. (2019). Elephant grass (Pennisetum purpureum) mediated phytoremediation of crude oil-contaminated soil. Nigerian Journal of Environmental Sciences and Technology, 3(1), 105-111.

  • Bragança, I., Lemos, P. C., Delerue-Matos, C., & Domingues, V. F. (2019). Assessment of pyrethroid pesticides in topsoils in northern Portugal. Water, Air and Soil Pollution, 230, 166. https://doi.org/10.1007/s11270-019-4209-7

  • Calvelo Pereira, R., Monterroso, C., & Macías, F. (2010). Phytotoxicity of hexachlorocyclohexane: Effect on germination and early growth of different plant species. Chemosphere, 79(3), 326-333. http://doi.org/10.1016/j.chemosphere.2010.01.035

  • Chaudhry, Q., Blom-Zandstra, M., Gupta, S. K., & Joner, E. J. (2005). Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environmental Science and Pollution Research, 12, 34-48. https://doi.org/10.1065/espr2004.08.213

  • Chouychai, W. (2012). Effect of some plant growth regulators on lindane and

  • alpha-endosulfan toxicity to Brassica chinensis. Journal of Environmental Biology, 33(4), 811-816.

  • Chouychai, W., Kruatrachue, M., & Lee, H. (2015). Effect of plant growth regulators on phytoremediation of hexachlorocyclohexane-contaminated soil. International Journal of Phytoremediation, 17(11), 1053-1059. https://doi.org/10.1080/15226514.2014.989309

  • Chouychai, W., Sangdee, A., & Somtrakoon, K. (2022). Effect of Streptomyces inoculation on Ipomoea aquatica and Pachyrhizus erosus grown under salinity and low water irrigation conditions. Pertanika Journal of Tropical Agricultural Science, 45(2), 411-432. https://doi.org/10.47836/pjtas.45.2.05

  • Hammami, H., Parsa, M., Mohassel, M. H. R., Rahimi, S., & Mijani, S. (2016). Weeds ability to phytoremediate cadmium-contaminated soil. International Journal of Phytoremediation, 18(1), 48-53. https://doi.org/10.1080/15226514.2015.1058336

  • Hedden, P., & Sponsel, V. (2015). A century of gibberellin research. Journal of Plant Growth Regulation, 34, 740-760. https://doi.org/10.1007/s00344-015-9546-1

  • John, R., Ahmad, P., Gadgil, K., & Sharma, S. (2008). Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L. Plant Soil and Environment, 54(6), 262–270. https://doi.org/10.17221/2787-PSE

  • Kailani, M. H., Al-Antary, T. M., & Alawi, M. A. (2021). Monitoring of pesticides residues in soil samples from the southern districts of Jordan in 2016/2017. Toxin Reviews, 40(2), 198-214. https://doi.org/10.1080/15569543.2019.1580747

  • Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In L. Packer & R. Douce (Eds.), Methods in enzymology (Vol. 148, pp. 350-382). Academic Press. https://doi.org/10.1016/0076-6879(87)48036-1

  • Mamirova, A., Pidlisnyuk, V., Amirbekov, A., Ševců, A., & Nurzhanova, A. (2021). Phytoremediation potential of Miscanthus sinensis And. in organochlorine pesticides contaminated soil amended by Tween 20 and activated carbon. Evironmental Science and Pollution Research, 28, 16092-16106. https://doi.org/10.1007/s11356-020-11609-y

  • Maneepitak, S., & Cochard, R. (2014). Uses, toxicity levels, and environmental impacts of synthetic and natural pesticides in rice fields – A survey in Central Thailand. International Journal of Biodiversity Science, Ecosystem Services and Management, 10(2), 144-156, https://doi.org/10.1080/21513732.2014.905493

  • Osman, N. A., Roslan, A. M., Ibrahim, M. F., & Hassan, M. A. (2020). Potential use of Pennisetum purpureum for phytoremediation and bioenergy production: A mini review. Asia-Pacific Journal of Molecular Biology and Biotechnology, 28(1), 14-26. https://doi.org/10.35118/apjmbb.2020.028.1.02

  • Phetsuwan, A., Kunpratum, N., Pooam, M., Somtrakoon, K., & Chouychai, W. (2023). Application of salicylic acid and gibberellic acid increase stem cutting growth of Pennisetum purpureum cv. Mahasarakham and Pennisetum purpureum x Pennisetum americanum. Pertanika Journal of Tropical Agricultural Science, 46(3), 735-754. https://doi.org/10.47836/pjtas.46.3.01

  • Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biotechnology, 56, 15-39. https://doi.org/10.1146/annurev.arplant.56.032604.144214

  • Ramadhan, A., Njunie, M. N., & Lewa, K. K. (2015). Effect of planting material and variety on productivity and survival of Napier grass (Pennisetum purpureum Schumach) in the coastal lowlands of Kenya. East African Agricultural and Forestry Journal, 81(1), 40-45. https://doi.org/10.1080/00128325.2015.1040647

  • Riaz, G., Tabinda, B. A., Iqbal, S., Yasar, A., Abbas, M., Khan, A. M., Mahfooz, Y., & Baqar, M. (2017). Phytoremediation of organochlorine and pyrethroid pesticides by aquatic macrophytes and algae in freshwater systems. International Journal of Phytoremediation, 19(10), 894-898. https://doi.org/10.1080/15226514.2017.1303808

  • Sade, N., Galkin, E., & Moshelion, M. (2015). Measuring Arabidopsis, tomato and barley leaf relative water content (RWC). Bio-Protocol, 5(8), e1451. https://doi.org/10.21769/BIOPROTOC.1451

  • Siddiqui, M. H., Al-Whaibi, M. H., & Basalah, M. O. (2011). Interactive effect of calcium and gibberellin on nickel tolerance in relation to antioxidant systems in Triticum aestivum L. Protoplasma, 248, 503–511. https://doi.org/10.1007/s00709-010-0197-6

  • Somtrakoon, K., & Chouychai, W. (2021). Potential of salicylic acid and synthetic surfactant on anthracene and fluoranthene remediation by Impatiens balsamina. Walailak Journal of Science and Technology, 18(2), 7001. https://doi.org/10.48048/wjst.2021.7001

  • Somtrakoon, K., & Chouychai, W. (2022) Gibberellic acid treatment improved pyrene phytoremediation efficiency of ridge gourd (Luffa acutangula (L.) Roxb.) in soil. Soil and Sediment Contamination: An International Journal, 31(2), 253-263. https://doi.org/10.1080/15320383.2021.1926419

  • Sun, Y., Xu, Y., Zhou, Q., Wang, L., Lin, D., & Liang, X. (2013). The potential of gibberellic acid (GA3) and Tween-80 induced phytoremediation of co-contamination of Cd and Benzo[a]pyrene (B[a]P) using Tagetes patula. Journal of Environmental Management, 114, 202-208. https://doi.org/10.1016/j.jenvman.2012.09.018

  • Thatheyus, A. J., & Selvam, A. D. G. (2013). Synthetic pyrethroids: Toxicity and biodegradation. Applied Ecology and Environmental Sciences, 1(3), 33-36. https://doi.org/10.12691/aees-1-3-2

  • Thongruang, S., Kleawkleaur, K., Prombut, P., & Manatrinon, S. (2021). Comparisons in yields, forage characteristics, sweetness and nutritive values of sweet grass (Pennisetum purpureum cv. Mahasarakham) and Napier Pak Chong 1 grass (Pennisetum purpureum x Pennisetum americanum) at different cutting ages. Khon Kaen Agriculture Journal, 49(5), 1092-1102. https://doi.org/10.14456/kaj.2021.97

  • Xie, W., & Zhou, J. (2008). Cypermethrin persistence and soil properties as affected by long-term fertilizer management. Acta Agriculturae Scandinavica, Section B – Soil and Plant Science, 58(4), 314-321. https://doi.org/10.1080/09064710701743096

  • Xu, Z.-M., Mei, X.-Q., Tan, L., Li, Q.-S., Wang, L.-L., He, B.-Y., Guo, S.-H., Zhou, C., & Ye, H.-J. (2018). Low root/shoot (R/S) biomass ratio can be an indicator of low cadmium accumulation in the shoot of Chinese flowering cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) cultivars. Environmental Science and Pollution Research, 25, 36328-36340. https://doi.org/10.1007/s11356-018-3566-x

  • Zhou, Y., Zhang, J., Su, E., Wei, G., Ma, Y., & Wei, D. (2008). Phenanthrene biodegradation by an indigenous Pseudomonas sp. ZJFo8 with TX100 as surfactant. Annals of Microbiology, 58, 439-442. https://doi.org/10.1007/BF03175540

  • Zhu, L., & Zhang, M. (2008). Effect of rhamnolipids on the uptake of PAHs by ryegrass. Environmental Pollution, 156(1), 46-52. https://doi.org/10.1016/j.envpol.2008.01.004

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JTAS-2690-2023

Download Full Article PDF

Share this article

Related Articles