e-ISSN 2231-8542
ISSN 1511-3701
Nabila Jasmine Afifi Mohd Nawi, Habsah Bidin and Mamat Hamidi Kamalludin
Pertanika Journal of Tropical Agricultural Science, Volume 46, Issue 4, November 2023
DOI: https://doi.org/10.47836/pjtas.46.4.16
Keywords: Bovine, cryopreservation, Cryotop, oocyte, vitrification
Published on: 27 November 2023
Cryopreservation is used to preserve biological samples over an extended period at ultra-low temperatures. This process evolved into vitrification, a more advanced and superior technology in which fluids or water molecules form a glass-like structure without forming ice crystals. Unlike fresh cells, cryopreservation is reported to reduce oocyte viability and developmental competency. This study employed two vitrification techniques, vitrification solution (VS) and Cryotop, to investigate the meiotic resumption in bovine. Oocytes were extracted from cow ovaries collected from slaughterhouses in Banting and Shah Alam, Selangor, Malaysia. The oocytes were grouped (A, B, and B’) based on cumulus morphology and matured in vitro in a culture dish (humidified 5% carbon dioxide incubator at 38.5°C) for 20 to 24 hr. Oocytes were vitrified after maturation using straws or aids of Cryotop sheets, then submerged in liquid nitrogen and stored for five days before defrosting for cryoprotectant elimination. By using Giemsa staining, the maturation state of fresh and vitrified bovine oocytes was evaluated through five parameters: zygotene, pachytene, diakinesis, metaphase I, and metaphase II. The maturation rate demonstrated only slight differences in the three groups of oocytes treated with VS (A: 44.79%; B: 30.97%; B’: 20.70%) and Cryotop (A: 39.42%; B: 37.27%; B’: 28.97%), which were significantly lower than fresh oocytes (A: 55.83%; B: 44.82%; B’: 56.17%). Both VS and Cryotop methods were viable options for cryopreserving oocytes, but the Cryotop technique was more effective in increasing the meiotic competence of poor-quality oocytes.
Abd El-Aziz, A. H., Mahrous, U. E., Kamel, S. Z., & Sabek, A. A. (2016). Factors influencing in vitro production of bovine embryos: A review. Asian Journal of Animal and Veterinary Advances, 11(12), 737–756. https://doi.org/10.3923/ajava.2016.737.756
Aguila, L., Treulen, F., Therrien, J., Felmer, R., Valdivia, M., & Smith, L. C. (2020). Oocyte selection for in vitro embryo production in bovine species: Noninvasive approaches for new challenges of oocyte competence. Animals, 10(12), 2196. https://doi.org/10.3390/ani10122196
Aljaser, F. S. (2022). Cryopreservation methods and frontiers in the art of freezing life in animal models. In Y. Bozkurt & M. N. Bucak (Eds.), Animal reproduction. IntechOpen. https://doi.org/10.5772/intechopen.101750
Amidi, F., Khodabandeh, Z., & Mogahi, M. H. N. (2018). Comparison of the effects of vitrification on gene expression of mature mouse oocytes using cryotop and open-pulled straw. International Journal of Fertility and Sterility, 12(1), 61–67. https://doi.org/10.22074/ijfs.2018.5112
Angel-Velez, D., De Coster, T., Azari-Dolatabad, N., Fernandez-Montoro, A., Benedetti, C., Pascottini, O. B., Woelders, H., Soom, A. V., & Smits, K. (2021). New alternative mixtures of cryoprotectants for equine immature oocyte vitrification. Animals, 11(11), 3077. https://doi.org/10.3390/ani11113077
Basirat, Z., Rad, H. A., Esmailzadeh, S., Jorsaraei, S. G. A., Hajian-Tilaki, K., Pasha, H., & Ghofrani, F. (2016). Comparison of pregnancy rate between fresh embryo transfers and frozen-thawed embryo transfers following ICSI treatment. International Journal of
Reproductive Biomedicine, 14(1), 39–46.
Bidin, H. (2005). IVF performance of different qualities of oocyte using co-culture and chemically-defined medium in Malaysian cattle [Unpublished Doctoral dissertation]. Universiti Malaya.
Bidin, H., Osman, N. A., & Kamaruddin, M. (2012). Effects of oestradiol-17β on the development of cattle oocytes. In Proceedings of the 5th International Conference on Animal Nutrition 2012 Malacca, Malaysia (pp. 314-316). Malaysian Agricultural Research and Development Institute.
Bottrel, M., Ortiz, I., Pereira, B., Díaz-Jiménez, M., Hidalgo, M., Consuegra, C., Morató, R., Mogas, T., & Dorado, J. (2019). Cryopreservation of donkey embryos by the cryotop method: Effect of developmental stage, embryo quality, diameter and age of embryos. Theriogenology, 125, 242–248. https://doi.org/10.1016/j.theriogenology.2018.11.011
Budani, M. C., & Tiboni, G. M. (2020). Effects of supplementation with natural antioxidants on oocytes and preimplantation embryos. Antioxidants, 9(7), 612. https://doi.org/10.3390/antiox9070612
Cobo, A., Bellver, J., Domingo, J., Pérez, S., Crespo, J., Pellicer, A., & Remohí, J. (2008). New options in assisted reproduction technology: The Cryotop method of oocyte vitrification. Reproductive Biomedicine Online, 17(1), 68–72. https://doi.org/10.1016/s1472-6483(10)60295-7
Davachi, N. D., Shahneh, A. Z., Kohram, H., Zhandi, M., Dashti, S., Shamsi, H., & Moghadam, R. (2014). In vitro ovine embryo production: The study of seasonal and oocyte recovery method effects. Iranian Red Crescent Medical Journal, 16(9), e20749. https://doi.org/10.5812/ircmj.20749
Dhali, A., Kolte, A. P., Mishra, A., Roy, S. C., & Bhatta, R. (2018). Cryopreservation of oocytes and embryos: Current status and opportunities. In D. S. Sheriff (Ed.), Infertility, assisted reproductive technologies and hormone assays. IntechOpen. https://doi.org/10.5772/intechopen.81653
Díez, C., Muñoz, M., Caamaño, J. N., & Gómez, E. (2012). Cryopreservation of the bovine
oocyte: Current status and perspectives.Reproduction in Domestic Animals, 47(s3), 76–83. https://doi.org/10.1111/j.1439-0531.2012.02029.x
Do, V. H., Walton, S., Catt, S., & Taylor-Robinson, A. W. (2016). Requirements for cryopreservation of in vitro-produced bovine embryos by a standard method of vitrification. Journal of Veterinary Science and Animal Husbandry, 4(1), 102. https://doi.org/10.15744/2348-9790.4.102
EXTOLSEED Oocyte and Sperm Bank (2018). Thawing (Kitazato). https://extolseed.com/vitrification-and-warming-kitazato/thawing-kitazato/
Fathi, M., Moawad, A. R., & Badr, M. R. (2018). Production of blastocysts following in vitro maturation and fertilization of dromedary camel oocytes vitrified at the germinal vesicle stage. PLOS One, 13(3), e0194602. https://doi.org/10.1371/journal.pone.0194602
Hajarian, H., Wahid, H., Rosnina, Y., Daliri, M., Dashtizad, M., Karamishabankareh, H., & Abas Mazni, O. (2011). Cryotop and development of vitrified immature bovine oocytes. Brazilian Journal of Veterinary and Animal Sciences, 63(1), 67–73. https://doi.org/10.1590/s0102-09352011000100011
Hochi, S. (2022). Cryodevices developed for minimum volume cooling vitrification of bovine oocytes. Animal Science Journal, 93(1), e13683. https://doi.org/10.1111/asj.13683
Idrissi, S. J., Le Bourhis, D., Lefevre, A., Emond, P., Le Berre, L., Desnoës, O., Joly, T., Buff, S., Maillard, V., Schibler, L., Salvetti, P., & Elis, S. (2021). Lipid profile of bovine grade 1 blastocysts produced either in vivo or in vitro before and after slow freezing process. Scientific Reports, 11, 11618. https://doi.org/10.1038/s41598-021-90870-8
Iussig, B., Maggiulli, R., Fabozzi, G., Bertelle, S., Vaiarelli, A., Cimadomo, D., Ubaldi, F. M., & Rienzi, L. (2019). A brief history of oocyte cryopreservation: Arguments and facts. Acta Obstetricia et Gynecologica Scandinavica, 98(5), 550-558. https://doi.org/10.1111/aogs.13569
Jain, J. K., & Paulson, R. J. (2006). Oocyte cryopreservation. Fertility and Sterility, 86(4), 1037–1046. https://doi.org/10.1016/j.fertnstert.2006.07.1478
Kader, A. A., Choi, A., Orief, Y., & Agarwal, A. (2009). Factors affecting the outcome of human blastocyst vitrification. Reproductive Biology and Endocrinology, 7, 99. https://doi.org/10.1186/1477-7827-7-99
Keshavarzi, S., Eftekhari, A. D., Vahabzadeh, H., Mehrafza, M., Taheripanah, R., Asgharnia, M., Esfandyari, S., Ghazifard, A., Hosseinirad, H., & Paktinat, S. (2022). A comparative study of post-warming survival rates and clinical outcomes of human blastocysts vitrified/warmed by CryoTouch and Cryotop methods. JBRA assisted Reproduction, 26(4), 568–573. https://doi.org/10.5935/1518-0557.20210116
Kuwayama, M. (2007). Highly efficient vitrification for cryopreservation of human oocytes and embryos: The Cryotop method. Theriogenology, 67(1), 73–80. https://doi.org/10.1016/j.theriogenology.2006.09.014
Kuwayama, M., Vajta, G., Kato, O., & Leibo, S. P. (2005). Highly efficient vitrification method for cryopreservation of human oocytes. Reproductive BioMedicine Online, 11(3), 300–308. https://doi.org/10.1016/s1472-6483(10)60837-1
Liu, S., & Li, F. (2020). Cryopreservation of single-sperm: Where are we today? Reproductive Biology and Endocrinology, 18, 41. https://doi.org/10.1186/s12958-020-00607-x
Magata, F., Ideta, A., Matsuda, F., Urakawa, M., & Oono, Y. (2021). Glutathione ethyl ester improved the age-induced decline in the developmental competence of bovine oocytes. Theriogenology, 167, 37–43. https://doi.org/10.1016/j.theriogenology.2021.03.004
Mahmoud, K. G. M., El-Sokary, M. M. M., Kandiel, M. M. M., El-Roos, M. E. A. A., & Sosa, G. M. S. (2016). Effects of cysteamine during in vitro maturation on viability and meiotic competence of vitrified buffalo oocytes. Iranian Journal of Veterinary Research, 17(3), 165–170.
Mogas, T. (2018). Update on the vitrification of bovine oocytes and in vitro-produced embryos. Reproduction, Fertility, and Development, 31(1), 105–117. https://doi.org/10.1071/rd18345
Nagy, Z. P., Chang, C.-C., Shapiro, D., Bernal, D. P., Kort, H. I., & Vajta, G. (2009). The efficacy and safety of human oocyte vitrification. Seminars in Reproductive Medicine, 27(6), 450–455. https://doi.org/10.1055/s-0029-1241054
Nagy, Z. P., Shapiro, D., & Chang, C.-C., (2020). Vitrification of the human embryo: A more efficient and safer in vitro fertilization treatment. Fertility and Sterility, 113(2), 241-247. https://doi.org/10.1016/j.fertnstert.2019.12.009
Nikseresht, M., Toori, M. A., Rahimi, H. R., Fallahzadeh, A. R., Kahshani, I. R., Hashemi, S. F., Bahrami, S., & Mahmoudi, R. (2017). Effect of antioxidants (β-mercaptoethanol and cysteamine) on assisted reproductive technology in vitro. Journal of Clinical and Diagnostic Research: JCDR, 11(2), BC10–BC14. https://doi.org/10.7860/JCDR/2017/21778.9298
Peinado, I., Moya, I., García-Valverde, L., Francés, R., Ribes, R., Polo, P., Gómez-Torres, M. J., & Monzó, A. (2022). Potential development of vitrified immature human oocytes: influence of the culture medium and the timing of vitrification. International Journal of Molecular Sciences, 24(1), 417. https://doi.org/10.3390/ijms24010417
Prentice, J. R., & Anzar, M. (2010). Cryopreservation of mammalian oocyte for conservation of animal genetics. Veterinary Medicine International, 2011, 146405. https://doi.org/10.4061/2011/146405
Rao, B. S., Mahesh, Y. U., Charan, K. V., Suman, K., Sekhar, N., & Shivaji, S. (2012). Effect of vitrification on meiotic maturation and expression of genes in immature goat cumulus oocyte complexes. Cryobiology, 64(3), 176–184. https://doi.org/10.1016/j.cryobiol.2012.01.005
Reyes, J. N. V., & Jaramillo, L. C. (2016). Cryopreservation method and composition of the vitrification solution affect viability of in vitro bovine embryos. Revista Colombiana de Ciencias Pecuarias, 29, 130–137. https://doi.org/10.17533/udea.rccp.v29n2a06
Rienzi, L., Romano, S., Albricci, L., Maggiulli, R., Capalbo, A., Baroni, E., Colamaria, S., Sapienza, F., & Ubaldi, F. (2010). Embryo development of fresh ‘versus’ vitrified metaphase II oocytes after ICSI: A prospective randomized sibling-oocyte study. Human Reproduction, 25(1), 66–73. https://doi.org/10.1093/humrep/dep346
Rybska, M., Knap, S., Jankowski, M., Jeseta, M., Bukowska, D., Antosik, P., Nowicki, M., Zabel, M., Kempisty, B., & Jaśkowski, J. M. (2018). Cytoplasmic and nuclear maturation of oocytes in mammals – Living in the shadow of cells developmental capability. Medical Journal of Cell Biology, 6(1), 13–17. https://doi.org/10.2478/acb-2018-0003
Sanches, B. V., Zangirolamo, A. F., & Seneda, M. M. (2019). Intensive use of IVF by large-scale dairy programs. Animal Reproduction, 16(3), 394–401. https://doi.org/10.21451/1984-3143-AR2019-0058
Sasaki, H., Hamatani, T., Kamijo, S., Iwai, M., Kobanawa, M., Ogawa, S., Miyado, K., & Tanaka, M. (2019). Impact of oxidative stress on age-associated decline in oocyte developmental competence. Frontiers in Endocrinology, 10, 811. https://doi.org/10.3389/fendo.2019.00811
Saunders, K. M., & Parks, J. E. (1999). Effects of cryopreservation procedures on the cytology and fertilization rate of in vitro-matured bovine oocytes. Biology of Reproduction, 6(1), 178–187. https://doi.org/10.1095/biolreprod61.1.178
Sripunya, N., Somfai, T., Inaba, Y., Nagai, T., Imai, K., & Parnpai, R. (2010). A comparison of cryotop and solid surface vitrification methods for the cryopreservation of in vitro matured bovine oocytes. Journal of Reproduction and Development, 56(1), 176–181. https://doi.org/10.1262/jrd.09-108h
Sydykov, B., Oldenhof, H., Sieme, H., & Wolkers, W. F. (2018). Storage stability of liposomes stored at elevated subzero temperatures in DMSO/sucrose mixtures. PLOS One, 13(7), e0199867. https://doi.org/10.1371/journal.pone.0199867
Tao, T., & Del Valle, A. (2008). Human oocyte and ovarian tissue cryopreservation and its application. Journal of Assisted Reproduction and Genetics, 25, 287–296. https://doi.org/10.1007/s10815-008-9236-z
Tharasanit, T., & Thuwanut, P. (2021). Oocyte cryopreservation in domestic animals and humans: Principles, techniques and updated outcomes. Animals, 11(10), 2949. https://doi.org/10.3390/ani11102949
Tonev, I. D., Hristova, S. H., Zhivkov, A. M., & Mincheff, M. S. (2020). Cytotoxic effect of dimethyl sulfoxide (DMSO) on hematopoietic stem cells: Influence of the temperature and the incubation time. Bulgarian Chemical Communications, 52(Special Issue B), 40–43. https://doi.org/10.34049/bcc.52.B.0011
Turathum, B., Gao, E.-M., & Chian, R.-C. (2021). The function of cumulus cells in oocyte growth and maturation and in subsequent ovulation and fertilization. Cells, 10(9), 2292. https://doi.org/10.3390/cells10092292
Valdez, C. A., Abas Mazni, O., Takahashi, Y., Fujikawa, S., & Kanagawa, H. (1992). Successful cryopreservation of mouse blastocysts using a new vitrification solution. Journal of Reproduction and Fertility, 96(2), 793–802. https://doi.org/10.1530/jrf.0.0960793
Vining, L. M., Zak, L. J., Harvey, S. C., & Harvey, K. E. (2021). The role of apoptosis in cryopreserved animal oocytes and embryos. Theriogenology, 173, 93–101. https://doi.org/10.1016/j.theriogenology.2021.07.017
Vladimirov, I. K., Tacheva, D., & Dobrinov, V. (2019). The present and future of embryo cryopreservation. In B. Wu & H. L. Feng (Eds.), Embryology: Theory and practice. IntechOpen. https://doi.org/10.5772/intechopen.80587
Whaley, D., Damyar, K., Witek, R. P., Mendoza, A., Alexander, M., & Lakey, J. R. T. (2021). Cryopreservation: An overview of principles and cell-specific considerations. Cell Transplantation, 30, 1-12. https://doi.org/10.1177/0963689721999617
ISSN 1511-3701
e-ISSN 2231-8542