e-ISSN 2231-8542
ISSN 1511-3701
Irina Anikina, Viktor Kamkin, Zhastlek Uakhitov, Mayra Zhagiparova, Ulan Tleubekov and Galiya Kazhibayeva
Pertanika Journal of Tropical Agricultural Science, Volume 46, Issue 4, November 2023
DOI: https://doi.org/10.47836/pjtas.46.4.07
Keywords: Biological preparations, growth regulators, mechanisms of action, phytohormones, tuberization
Published on: 27 November 2023
Ontogenesis control is important for developing methods for modeling and yield forecasting potatoes. Knowledge of the mechanisms of phyto-regulation allows for a directed impact on plant ontogenesis. Phytohormone analogs are widely used both in culture in vitro and in vivo; under their influence, the processes of differentiation and callusogenesis take place, morphogenesis and tuberization are induced in vitro, a root formation is induced, seed dormancy is overcome, plant resistance to abiotic stress factors is increased, and protective properties against phytoinfections increases the content of valuable substances and yield. Currently, the list of drugs with pronounced regulatory activity has expanded significantly. Among chemical alternatives, preparations based on microorganisms are most widely used in practice as yield stimulants and resistance inducers. At the same time, there is a growing interest in herbal preparations containing a huge amount of valuable biologically active substances with a different spectrum of action. The growing role and importance of plant growth and development regulators necessitates a deep study of the action nature of these compounds using modern biochemical and molecular genetic methods. At the same time, the search for new strains and drugs that can positively influence plant health and growth under various growth conditions, especially under stress conditions, is relevant. Works in this direction should be intensified due to the constant climatic risks. Creating a science-based system of growth regulation can provide reliable, stable results for potatoes growing in any field conditions of future agriculture.
Abbas, M. M., & Hussain, W. S. (2020). Biostimulants of pepper and eggplant by using plants aqueous extract. Plant Cell Biotechnology and Molecular Biology, 21(65&66), 78-82.
Abd-El-Khair, H., & Haggag, W. M. (2007). Application of some Egyptian medicinal plant extracts against potato late and early blights. Research Journal of Agriculture and Biological Sciences, 3(3), 166-175.
Ahmed, I. H. M., Ali, E. F., Gad, A. A., Bardisi, A., El-Tahan, A. M., Esadek, O. A. A., El-Saadony, M. T., & Gendy, A. S. (2021). Impact of plant growth regulators spray on fruit quantity and quality of Capsicum annuum L. cultivars grown under plastic tunnels. Saudi Journal of Biological Sciences, 29(4), 2291-2298. https://doi.org/10.1016/j.sjbs.2021.11.062
Aksenova, N. P., Konstantinova T. N., Golyanovskaya S. A., Schmülling T., Kossmann J., Willmitzer L., & Romanov G. A. (1999). In vitro growth and tuber formation by transgenic potato plants harboring rolC or rolB genes under control of the patatin promoter. Russian Journal of Plant Physiology, 46(4), 513-519.
Ali, S., Khan, N., Nouroz, F., Erum, S., Nasim, W., & Shahid, M. A. (2018). In vitro effects of GA3 on morphogenesis of CIP potato explants and acclimatization of plantlets in field. In Vitro Cellular and Developmental Biology – Plant, 54, 104–111. https://doi.org/10.1007/s11627-017-9874-x
Amoanimaa-Dede, H., Su, C., Yeboah, A., Zhou H, Zheng, D., & Zhu, H. (2022). Growth regulators promote soybean productivity: A review. PeerJ, 10, e12556. https://doi.org/10.7717/peerj.12556
Anikina, I., & Issayeva, K. (2023). Use of the preparation based on Solanum nigrum as a potato yield stimulator. Bulgarian Journal of Agricultural Science, 29(2), 272–276.
Anikina, I., Bekseitov, T., & Dzhaksybaeva, G. (2015). Use of the preparation chlormequat chloride to increase resistance of regenerated potato. International Journal of Pharma and Bio Sciences, 6(2), B417-B422.
Bulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E. V. L., & Schulze-Lefert, P. (2013). Structure and function of bacterial microbiota of plants. Annual Review of Plant Biology, 64, 807-838. https://doi.org/10.1146/annurev-arplant-050312-120106
Chen, M., Wang, J., Liu, B., Zhu, Y., Xiao, R., Yang, W., Ge, C., & Chen, Z. (2020). Biocontrol of tomato bacterial wilt by the new strain Bacillus velezensis FJAT-46737 and its lipopeptides. BMC Microbiology, 20, 160. https://doi.org/10.1186/s12866-020-01851-2
Chifetete, V. W., & Dames, J. F. (2020). Mycorrhizal interventions for sustainable potato production in Africa. Frontiers in Sustainable Food Systems, 4, 593053.
Dahshan, A. M. A., Zaki, H. E. M., Moustafa, Y. M. M., Abdel-Mageed, Y. T., & Hassan M. A. M. (2018). Effect of some growth regulators and natural extracts on yield and quality of potato. Minia Journal of Agriculture Research and Development, 38(2), 271-295.
Dasgupta, D., Paul, A., Acharya, K., Minkina, T., Mandzhieva, S., Gorovtsov, A. V., Chakraborty, N., & Keswani, C. (2023). Bioinoculant mediated regulation of signalling cascades in various stress responses in plants. Heliyon, 9(1), e12953. https://doi.org/10.1016/j.heliyon.2023.e12953
Davidyants, E. S. (2011). Vliyanie triterpenovyh glikozidov na aktivnost’ α i β-amilaz i obshchee soderzhanie belka v prorostkah pshenicy [Effect of triterpene glycosides on α and ß amylase activity and total protein content in wheat seedlings]. Prikladnaya Biohimiya i Mikrobiologiya, 5(47), 530-536.
Fan, X., Zhang, S., Mo, X., Li, Y., Fu, Y., & Liu, Z. (2017). Effects of plant growth-promoting rhizobacteria and N source on plant growth and N and P uptake by tomato grown on calcareous soils. Pedosphere, 27(6), 1027–1036. https://doi.org/10.1016/S1002-0160(17)60379-5
Godlewska, K., Ronga, D., & Michalak, I. (2021). Plant extracts - Importance in sustainable agriculture. Italian Journal of Agronomy, 16(2), 1851. https://doi.org/10.4081/ija.2021.1851
Gorbyleva, E. L., & Borovskii, G. B. (2018). Biostimulyatory rosta i ustoychivosti rasteniy terpenoidnoy prirody i drugie biologicheski aktivnye soedineniya, poluchennye iz hvoynyh porod [Growth and stability biostimulators for plants containing terpenoids and other biologically active compounds]. Izvestiya Vuzov: Prikladnaya Khimiya i Biotekhnologiya, 8(4), 32–41.
Guivarc’h, A., Rembur, J., Goetz, M., Roitsch, T., Noin, M., Schmülling, T., & Chriqui, D. (2002). Local expression of the ipt gene in transgenic tobacco (Nicotiana tabacum L. cv. SR1) axillary buds establishes a role for cytokinins in tuberization and sink formation. Journal of Experimental Botany, 53(369), 621-629.
Hakim, S., Naqqash, T., Nawaz, M. S., Laraib, I., Siddique, M. J., Zia, R., Mirza, M. S., & Imran, A. (2021). Rhizosphere engineering with plant growth-promoting microorganisms for agriculture and ecological sustainability. Frontiers in Sustainable Food Systems, 5, 617157. https://doi.org/10.3389/fsufs.2021.617157
Han, Q.-Q., Lü, X.-P., Bai, J.-P., Qiao, Y., Paré, P. W., Wang, S.-M., Zhang, J.-L., Wu, Y.-N., Pang, X.-P., Xu, W.-B., & Wang, Z.-L. (2014). Beneficial soil bacterium Bacillus subtilis (GB03) augments salt tolerance of white clover. Frontiers in Plant Science, 5, 525. https://doi.org/10.3389/fpls.2014.00525
Hannapel, D. J., Sharma, P., Lin, T., & Banerjee, A. K. (2017). The multiple signals that control tuber formation. Plant Physiology, 174(2), 845-856. https://doi.org/10.1104/pp.17.00272
Harb, A., Awad, D., & Samarah, N. (2015). Gene expression and activity of antioxidant enzymes in barley (Hordeum vulgare L.) under controlled severe drought. Journal of Plant Interactions, 10(1), 109–116. https://doi.org/10.1080/17429145.2015.1033023
Hong, Y., Glick, B. R., & Pasternak, J. J. (1991). Plant microbial interaction under gnotobiotic conditions - A scanning electron-microscope study. Current Microbiology, 23, 111–114. https://doi.org/10.1007/BF02092259
Hossain, M. S., Hossain, M. M., Hossain, T., Haque, M. M., Quamruzzaman, M., & Sarkar, M. D. (2019). Varietal response to benzylaminopurine and chlorocholine chloride on in vitro tuberization of potato. Agricultural Research, 8, 452-460. https://doi.org/10.1007/s40003-018-0392-9
Htwe, A. Z., Moh, S. M., Moe, K., & Yamakawa, T. (2018). Effects of co-inoculation of Bradyrhizobium japonicum SAY3-7 and Streptomyces griseoflavus P4 on plant growth, nodulation, nitrogen fixation, nutrient uptake, and yield of soybean in a field condition. Soil Science and Plant Nutrition, 64(2), 222-229. https://doi.org/10.1080/00380768.2017.1421436
Jansa, J., Šmilauer, P., Borovička, J., Hršelová, H., Forczek, S. T., Slámová, K., Řezanka, T., Rozmoš, M., Bukovská, P., & Gryndler, M. (2020). Dead Rhizophagus irregularis biomass mysteriously stimulates plant growth. Mycorrhiza, 30, 63-77. https://doi.org/10.1007/s00572-020-00937-z
Jha, C. K., & Saraf, M. (2015). Plant growth promoting rhizobacteria (PGPR): A review. Journal of Agricultural Research and Development, 5(2), 108–119. https://doi.org/10.13140/RG.2.1.5171.2164
Jing, H., & Strader, L. C. (2019). Interplay of auxin and cytokinin in lateral root development. International Journal of Molecular Sciences, 20(3), 486. https://doi.org/10.3390/ijms20030486
Kanmani, E., Ravichandran, V., Sivakumar, R., Senthil, A., Krishna Surendar, K., & Boominathan, P. (2017). Influence of plant growth regulators on physiological traits under salinity stress in constrasting rice varieties (Oryza sativa L.). International Journal of Current Microbiology and Applied Sciences, 6(5), 1654-1661. https://doi.org/10.20546/ijcmas.2017.605.180
Karthika, S., Midhun, S. J., & Jisha, M. (2020). A potential antifungal and growth-promoting bacterium Bacillus sp. KTMA4 from tomato rhizosphere. Microbial Pathogenesis, 142, 104049. https://doi.org/10.1016/j.micpath.2020.104049
Kasim, W. A., Gaafar, R. M., Abou-Ali, R. M., Omar, M. N., & Hewait, H. M. (2016). Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Annals of Agricultural Sciences, 61(2), 217–227. https://doi.org/10.1016/j.aoas.2016.07.003
Kaushal, M., & Wani, S. P. (2016). Plant-growth-promoting rhizobacteria: Drought stress alleviators to ameliorate crop production in drylands. Annals of Microbiology, 66, 35–42. https://doi.org/10.1007/s13213-015-1112-3
Khan, N., & Bano, A. (2016). Role of plant growth promoting rhizobacteria and Ag-nano particle in the bioremediation of heavy metals and maize growth under municipal wastewater irrigation. International Journal of Phytoremediation, 18(3), 211–221. https://doi.org/10.1080/15226514.2015.1064352
Khan, N., & Bano, A. (2019). Exopolysaccharide producing rhizobacteria and their impact on growth and drought tolerance of wheat grown under rainfed conditions. PLOS One, 14(9), e0222302. https://doi.org/10.1371/journal.pone.0222302
Khan, N., Bano, A., & Curá, J. A. (2020). Role of beneficial microorganisms and salicylic acid in improving rainfed agriculture and future food safety. Microorganisms, 8(7), 1018. https://doi.org/10.3390/microorganisms8071018
Khan, N., Bano, A., & Zandi, P. (2018). Effects of exogenously applied plant growth regulators in combination with PGPR on the physiology and root growth of chickpea (Cicer arietinum) and their role in drought tolerance. Journal of Plant Interactions, 13(1), 239–247. https://doi.org/10.1080/17429145.2018.1471527
Kolachevskaya, O. O., Lomin, S. N., Arkhipov, D. V., & Romanov, G. A. (2019). Auxins in potato: Molecular aspects and emerging roles in tuber formation and stress resistance. Plant Cell Reports, 38, 681-698. https://doi.org/10.1007/s00299-019-02395-0
Kolachevskaya, O. O., Myakushina, Y. A., Getman, I. A., Lomin, S. N., Deyneko, I. V., Deigraf, S. V., & Romanov, G. A. (2021). Hormonal regulation and crosstalk of auxin/cytokinin signaling pathways in potatoes in vitro and in relation to vegetation or tuberization stages. International Journal of Molecular Sciences, 22(15), 8207. https://doi.org/10.3390/ijms22158207
Kudoyarova, G., Arkhipova, T. N., Korshunova, T., Bakaeva, M., Loginov, O., & Dodd, I. C. (2019). Phytohormone mediation of interactions between plants and non-symbiotic growth promoting bacteria under edaphic stresses. Frontiers in Plant Science, 10, 1368. https://doi.org/10.3389/fpls.2019.01368
Külen, O., Stushnoff, C., Davidson, R. D., & Holm, D. G. (2011). Gibberellic acid and ethephon alter potato minituber bud dormancy and improve seed tuber yield. American Journal of Potato Research, 88, 167-174. https://doi.org/10.1007/с12230-010-9178-8
Kumlay, A. M., Kaya, C., & Yıldırım, B. (2021). Different plant growth regulators on improvement of potato (Solanum tuberosum L.) micropropagation. Journal of the Institute of Science and Technology, 11(2), 1603-1615. https://doi.org/10.21597/jist.873537
Kurepa, J., & Smalle, J. A. (2022). Auxin/cytokinin antagonistic control of the shoot/root growth ratio and its relevance for adaptation to drought and nutrient deficiency stresses. International Journal of Molecular Sciences, 23(4), 1933. https://doi.org/10.3390/ijms23041933
Li, S.-M., Zheng, H.-X., Zhang, X.-S., & Sui, N. (2020). Cytokinins as central regulators during plant growth and stress response. Plant Cell Reports, 40, 271–282. https://doi.org/10.1007/s00299-020-02612-1
Llorente, B. E., Alasia, M. A., & Larraburu, E. E. (2016). Biofertilization with Azospirillum brasilense improves in vitro culture of Handroanthus ochraceus, a forestry, ornamental and medicinal plant. New Biotechnology, 33(1), 32–40. https://doi.org/10.1016/j.nbt.2015.07.006
Lone, R., Shuab, R., Sharma, V., Kumar, V., Mir, R., & Koul, K. K. (2015). Effect of arbuscular mycorrhizal fungi on growth and development of potato (Solanum tuberosum) plant. Asian Journal of Crop Science, 7, 233-243. https://doi.org/10.3923/ajcs.2015.233.243
Mącik, M., Gryta, A., & Frąc, M. (2020). Biofertilizers in agriculture: An overview on concepts, strategies and effects on soil microorganisms. Advances in Agronomy, 162, 31–87. https://doi.org/10.1016/bs.agron.2020.02.001
Mahmood, S., Daur, I., Al-Solaimani, S. G., Ahmad, S., Madkour, H., Yasir, M., Hirt, H., Ali, S., & Ali, Z. (2016). Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean. Frontiers in Plant Science, 7, 876. https://doi.org/10.3389/fpls.2016.00876
Mani, F., Bettaieb, T. Doudech, N., & Hannachi, C. (2013). Effect of hydrogen peroxide and thiourea on dormancy breaking of microtubers and field-grown tubers of potato. African Crop Science Journal, 21(3), 221-234.
Mantelin, S., & Touraine, B. (2004). Plant growth-promoting bacteria and nitrate availability: Impacts on root development and nitrate uptake. Experimental Botany, 55(394), 27–34.
Marenych, M. M., Hanhur, V. V, Len, O. I., Hangur, Y. M., Zhornyk, I. I., & Kalinichenko, A. V. (2019). The efficiency of humic growth stimulators in pre-sowing seed treatment and foliar additional fertilizing of sown areas of grain and industrial crops. Agronomy Research, 17(1), 194-205. https://doi.org/10.15159/AR.19.023
Marulanda, A., Azcón, R., Chaumont, F., Ruiz-Lozano, J. M., & Aroca, R. (2010). Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta, 232(2), 533–543. https://doi.org/10.1007/s00425-010-1196-8
Meena, M., Swapnil, P., Divyanshu, K., Kumar, S., Harish., Tripathi, Y. N., Zehra, A., Marwal, A., & Upadhyay, R. S. (2020). PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives. Journal of Basic Microbiology, 60(10), 828-861. https://doi.org/10.1002/jobm.202000370
Meenakshi, K. (2021). Effect of kinetin on growth and development of microtubers of potato (Solanum tuberosum L.). International Journal of Multidisciplinary Research Configuration, 4(1), 48-54. https://doi.org/10.52984/ijomrc1408
Mitrofanov, S. V., & Novikov, N. N. (2020). Efficiency of using stimulating preparations in pre-treatment of spring barley seeds. Bulgarian Journal of Agricultural Science, 26(5), 958-965.
Murashev, S. V., Kiru, S. D., Verzhuk, V. G., & Pavlov, A. V. (2020). Potato plant growth acceleration and yield increase after treatment with an amino acid growth stimulant. Agronomy Research, 18(2), 494-506. https://doi.org/10.15159/ar.20.036
Nadeem, S. M., Ahmad, M., Zahir, Z. A., Javaid, A., & Ashraf, M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances, 32(2), 429–448. https://doi.org/10.1016/j.biotechadv.2013.12.005
Naseri, R., Maleki, A., Naserirad, H., Shebibi, S., & Omidian, A. (2013). Effect of plant growth promoting rhizobacteria (PGPR) on reduction nitrogen fertilizer application in rapeseed (Brassica napus L.). Middle East Journal of Scientific Research, 14(2), 213–220. https://doi.org/10.5829/idosi.mejsr.2013.14.2.1951
Oleńska, E., Małek, W., Wójcik, M., Swiecicka, I., Thijs, S., & Vangronsveld, J. (2020). Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. Science of the Total Environment, 743, 140682. https://doi.org/10.1016/j.scitotenv.2020.140682
Pavlista, A. D. (2011). Growth regulators increased yield of Atlantic potato. American Journal of Potato Research, 88, 479–484. https://doi.org/10.1007/s12230-011-9214-3
Pirttilä, A. M., Tabas, H. M. P., Baruah, N. & Koskimäki, J. J. (2021). Biofertilizers and biocontrol agents for agriculture: How to identify and develop new potent microbial strains and traits. Microorganisms, 9(4), 817. https://doi.org/10.3390/microorganisms9040817
Polyksenova, V. D. (2009). Inducirovannaya ustoychivost’ rasteniy k patogenam i abioticheskim faktoram stressa [Induced plant steadiness to pathogens and abiotic stress factors]. Byulleten’ BGU, 1, 48-60.
Prasad, R. (2022). Cytokinin and its key role to enrich the plant nutrients and growth under adverse conditions - An update. Frontiers in Genetics, 13, 883924. https://doi.org/10.3389/fgene.2022.883924
Puopolo, G., Raio, A., Pierson III, L. S., & Zoina, A. (2011). Selection of a new Pseudomonas chlororaphis strain for the biological control of Fusarium oxysporum f. sp. radicis-lycopersici. Phytopathologia Mediterranea, 50(2), 228-235.
Rahman, S. F. S. A., Singh E., Pieterse C. M. J., & Schenk P. M. (2018). Emerging microbial biocontrol strategies for plant pathogens. Plant Science, 267, 102–111. https://doi.org/10.1016/j.plantsci.2017.11.012
Ruzzi, M., & Aroca, R. (2015). Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Scientia Horticulturae, 196, 124–134. https://doi.org/10.1016/j.scienta.2015.08.042
Sarkar, D., Pandey, S. K., & Sharma, S. (2006). Cytokinins antagonize the jasmonates action on the regulation of potato (Solanum tuberosum) tuber formation in vitro. Plant Cell Tissue and Organ Culture, 87, 285-295. https://doi.org/10.1007/s11240-006-9166-3
Shahzad, R., Khan, A. L., Bilal, S., Waqas, M., Kang, S.-M., & Lee, I.-J. (2017). Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environmental and Experimental Botany, 136, 68–77. https://doi.org/10.1016/j.envexpbot.2017.01.010
Shainidze, O., Lamparadze, S., Beridze, N., Chkubadze, G., & Macharadze, G. (2022). Effect of different doses of insectofungicidal biopreparatione (Gaupsin) against Phytophthora of tomato in Adjara, Georgia. Bulgarian Journal of Agricultural Science, 28(3), 437-442.
Shi, Y., Lou, K., & Li, C. (2010). Growth and photosynthetic efficiency promotion of sugar beet (Beta vulgaris L.) by endophytic bacteria. Photosynthesis Research, 105(1), 5–13. https://doi.org/10.1007/s11120-010-9547-7
Shuab, R., Lone, R., & Koul, K. K. (2017). Influence of arbuscular mycorrhizal fungi on storage metabolites, mineral nutrition, and nitrogen-assimilating enzymes in potato (Solanum tuberosum L.) plant. Journal of Plant Nutrition, 40(10), 1386-1396. https://doi.org/10.1080/01904167.2016.1263317
Singh, C., & Jambukiya, H. (2020). Effect of foliar application of plant growth regulators on growth and yield attributing characters of green gram (Vigna radiata L. Wilczek). Journal of Crop and Weed, 16(2), 258-264. https://doi.org/10.22271/09746315.2020.v16.i2.1347
Spaepen, S., Bossuyt, S., Engelen, K., Marchal, K., & Vanderleyden, J. (2014). Phenotypical and molecular responses of Arabidopsis thaliana roots as a result of inoculation with the auxin-producing bacterium Azospirillum brasilense. New Phytologist, 201(3), 850–861. https://doi.org/10.1111/nph.12590
Subramanian, S., Souleimanov, A., & Smith, D. L. (2016). Proteomic studies on the effects of lipo-chitooligosaccharide and thuricin 17 under unstressed and salt stressed conditions in Arabidopsis thaliana. Frontiers in Plant Science, 7, 1314. https://doi.org/10.3389/fpls.2016.01314
Tsukanova, K. A., Chebotar, V. K., Meyer, J. J. M., & Bibikova, T. N. (2017). Effect of plant growth-promoting Rhizobacteria on plant hormone homeostasis. South African Journal of Botany, 113, 91–102. https://doi.org/10.1016/j.sajb.2017.07.007
Ul Hassan, T., & Bano, A. (2015). The stimulatory effects of L-tryptophan and plant growth promoting rhizobacteria (PGPR) on soil health and physiology of wheat. Journal of Soil Science and Plant Nutrition, 15(1), 190–201.
Vacheron, J., Desbrosses, G., Bouffaud, M.-L., Touraine, B., Moënne-Loccoz, Y., Muller, D., Legendre, L., Wisniewski-Dyé, F., & Prigent-Combaret, C. (2013). Plant growth-promoting rhizobacteria and root system functioning. Frontiers in Plant Science, 4, 356.
Vicente, M. R.-S., & Plasencia, J. (2011). Salicylic acid beyond defence: Its role in plant growth and development. Experimental Botany, 62(10), 3321–3338. https://doi.org/10.1093/jxb/err031
Vissey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255, 571-586. https://doi.org/10.1023/A:1026037216893
Vural, G. E., Özsan, T., Gozen, V., & Onus, A. N. (2018). In vitro micro tuber formation in potato (Solanum tuberosum L.): Is there any relation between methyl jasmonate, sugars, and explants? International Journal of Biotech Trends and Technology, 8(1), 1-8. https://doi.org/10.14445/22490183/IJBTT-V8I1P601
Wang, H., & Xiao, L. (2008). Effects of chlorocholine chloride on phytohormones and photosynthetic characteristics in potato (Solanum tuberosum L.). Journal of Plant Growth Regulation, 28, 21-27. https://doi.org/10.1007/s00344-008-9069-0
Wróbel, S., Kęsy, J., & Treder, K. (2017). Effect of growth regulators and ethanol on termination of dormancy in potato tubers. American Journal of Potato Research, 94, 544-555. https://doi.org/10.1007/s12230-017-9592-2
Wu, Q.-S., Cao, M.-Q., Zou, Y.-N., Wu, C., & He, X.-H. (2016). Mycorrhizal colonization represents functional equilibrium on root morphology and carbon distribution of trifoliate orange grown in a split-root system. Scientia Horticulturae, 199, 95‒102. https://doi.org/10.1016/j.scienta.2015.12.039
Xu, H., Lu, Y., & Tong, S. (2018). Effects of arbuscular mycorrhizal fungi on photosynthesis and chlorophyll fluorescence of maize seedlings under salt stress. Emirates Journal of Food and Agriculture, 30(3), 199-204. https://doi.org/10.9755/ejfa.2018.v30.i3.1642
Xun, F., Xie, B., Liu, S., & Guo, C. (2015). Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environmental Science and Pollution Research, 22, 598–608. https://doi.org/10.1007/s11356-014-3396-4
Zaitseva, N. V. (2017). Biologicheski aktivnye preparaty dlya proizvodstva selskohozyaystvennyh kultur iz rastitelnogo materiala YUzhnoy YAkutii [Biologically active preparations for crop production from plant raw materials of South Yakutia]. Uspekhi Sovremennoy Estestvennoy Nauki, 7, 30-35. https://doi.org/10.17513/use.36473
Zhang, R., Vivanco, J. M., & Shen, Q. (2017). The unseen rhizosphere root-soil-microbe interactions for crop production. Current Opinion in Microbiology, 37, 8–14. https://doi.org/10.1016/j.mib.2017.03.008
Zhang, Z. J., Zhou, W. J., Li, H. Z., Zhang, G. Q., Kaisrajan, S., & Yu, J. Q. (2006). Effect of jasmonic acid on in vitro explant growth and micro-tuberization in potato. Biologia Plantarum, 50, 453-456. https://doi.org/10.1007/s10535-006-0069-2
Zhao, Z., Wang, C., Yu, X., Tian, Y., Wang, W., Zhang, Y., Bai, W., Yang, N., Zhang, T., Zheng, H., Wang, Q., Lu, J., Lei, D., He, X., Chen, K., Gao, J., Liu, X., Liu, S., Jiang, L., … Wan, H. (2022). Auxin regulates source-sink carbohydrate partitioning and reproductive organ development in rice. Proceedings of the National Academy of Sciences, 119(36), e2121671119. https://doi.org/10.1073/pnas.2121671119
ISSN 1511-3701
e-ISSN 2231-8542