PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 47 (2) May. 2024 / JTAS-2800-2023

 

Characterization of Liquid Organic Fertilizer (LOF) Derived from Unmarketable Vegetables and Fruits

Sanjeev Ramarao, Elisa Azura Azman, Nor Elliza Tajidin, Roslan Ismail and Borhan Yahya

Pertanika Journal of Tropical Agricultural Science, Volume 47, Issue 2, May 2024

DOI: https://doi.org/10.47836/pjtas.47.2.15

Keywords: Fermentation, food security, inducer, liquid fertilizer, sustainable farming, unmarketable

Published on: 30 May 2024

The Malaysian government has been challenged with handling unmarketable vegetables and fruit waste that pollutes the environment and emits greenhouse gases, mainly methane and nitrous oxide. These greenhouse gases have been contributing to climate change. In contrast, these wastes consist of high moisture and readily biodegradable nutrients that can serve as the perfect substrate rate for fermentation. The valuable nutrients contained in these wastes can produce liquid organic fertilizers (LOF), which help improve the soil’s physical, chemical, and biological characteristics and reduce the demand for inorganic fertilizers and costs to farmers. In this regard, a study was conducted to produce and characterize LOF derived from unmarketable vegetables and fruit waste. The waste was identified from the nearest wet market, collected, and incubated in containers with a ratio of 1: 2: 0.1 (10 kg unmarketable vegetable and food waste: 20 L water: 1 kg inducer) for 30, 45, and 60 days. The unmarketable vegetables and fruits were fermented using three different types of inducers: yeast (Y), brown sugar (BS), and shrimp paste (SP). Unmarketable vegetables and fruit waste with no inducer were also included as a control. Samples from the produced LOF were taken after 30, 45, and 60 days of fermentation, filtered, and subjected to analysis for pH, electrical conductivity (EC), macro-, and micronutrients. These experiments were laid out in a randomized complete block design (RCBD) with three replications. The highest nitrogen (0.95%), phosphorus (0.31%), potassium (1.68%), copper (0.23 ppm), and manganese (9.03 ppm) were obtained from LOF fermented for 60 days using yeast, indicating that it improved the nutrient availability of agricultural waste. Moreover, this treatment provided optimum pH and EC values for the growth and development of plants. Thus, LOF derived from unmarketable vegetable and fruit waste can be considered an attractive alternative for supplementing chemical fertilizers.

  • Aisyah, S., Sunarlim, N., & Solfan, B. (2011). Pengaruh urine sapi terfermentasi dengan dosis dan interval pemberian yang berbeda terhadap pertumbuhan sawi (Brassica juncea L.) [The effect of fermented cow urine with different doses and intervals on the growth of mustard greens (Brassica juncea L.)]. Jurnal Agroteknologi, 2(1), 1-5. https://doi.org/10.24014/ja.v2i1.127

  • Armstrong, W. M. (1961). Distribution of potassium in baker’s yeast. Nature, 192, 65–66. https://doi.org/10.1038/192065b0

  • Ayuningtias, L. (2014). Pengaruh aerasi dan penambahan silika dengan pemeraman yang berbeda terhadap kandungan N, P, dan K pupuk cair unit gas bio [The effect of aeration and addition of silica with different ripening on the N, P, and K content of liquid fertilizers of bio gas units] [Unpublished Doctoral dissertation]. Universitas Brawijaya.

  • Balemi, T., & Negisho, K. (2012). Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: A review. Journal of Soil Science and Plant Nutrition, 12(3), 547–562. https://doi.org/10.4067/S0718-95162012005000015

  • Brouder, S. M., Bongen, A. S., Eck, K. J., & Hawkins, S. E. (2003). Manganese deficiencies in Indiana soils. Purdue Univiversity Cooperative Extension Service. Agronomy Guide. https://www.agry.purdue.edu/ext/pubs/ay-276-W.pdf

  • Bunyan, J. (2022, May 7). As fertiliser prices go up, farmers seek cash subsidy to offset costs. Malay Mail. https://www.malaymail.com/news/malaysia/2022/05/07/as-fertiliser-prices-go-up-farmers-seek-cash-subsidy-to-offset-costs/2057519

  • Campbell, W. R., & Hanna, M. I. (1937). The determination of nitrogen by modified Kjeldhal Methods. Journal of Biological Chemistry, 119(1), 1–7. https://doi.org/10.1016/S0021-9258(18)74426-8

  • da Silva, A. J. N., da Silva. R. A., da Silva Santos, J., de Medeiros, J. C. S., de Carvalho, F. G., da Silva, V. N., de Oliveira, C. J., de Araújo, A. C., da Silva, L. E. S. F., & Junior, J. G. (2015). Soil chemical properties and growth of sunflower (Helianthus annuus L.) as affected by the application of organic fertilizers and inoculation with arbuscular mycorrhizal fungi. Revista Brasileira de Ciencia do Solo, 39, 151–161. https://doi.org/10.1590/01000683rbcs20150194

  • Deore, G. B., Limaye, A. S., Shinde, B. M., & Laware, S. L. (2010). Effect of novel organic liquid fertilizer on growth and yield in chilli (Capsicum annum L.). Asian Journal of Experimental Biological Sciences, 2010, 15-19.

  • Duarte, C., Guerra, M., Daniel, P., Camelo, A. L., & Yommi, A. (2009). Quality changes of highbush blueberries fruit stored in CA with different CO2 levels. Journal of Food Science, 74(4), S154–S159. https://doi.org/10.1111/j.1750-3841.2009.01118.x

  • Food and Agriculture Organization of the United Nations. (2019). The state of food and agriculture: Moving forward on food loss and waste reduction. FAO. https://www.fao.org/3/ca6030en/ca6030en.pdf

  • Ginandjar, S., Frasetya, B., Nugraha, W., & Subandi, M. (2019). The effect of liquid organic fertilizer of vegetable waste and planting media on growth and yield of strawberry (Fragaria spp.) earlibrite cultivar. In IOP Conference Series: Earth and Environmental Science (Vol. 334, No.1, p.012033). IOP Publishing. https://doi.org/10.1088/1755-1315/334/1/012033

  • Goos, R. J., & Johnson, B. E. (2000). A comparison of three methods for reducing iron-deficiency chlorosis in soybean. Agronomy Journal, 92(6), 1135–1139. https://doi.org/10.2134/agronj2000.9261135x

  • Hamalová, M., Hodslavská, J., Janoš, P., & Kanický, V. (1997). Determination of phosphorus, potassium, and magnesium in fertilizers by inductively coupled plasma–atomic emission spectroscopy and comparison with other techniques. Journal of AOAC International, 80(6), 1151–1155. https://doi.org/10.1093/jaoac/80.6.1151

  • Hastuti, B., Astuti, R. K., & Hadi, S. (2022). Effect of fermentation time and sugar concentration on the quality characteristic of organic fertilizer from cattle and rabbit manure using vinnase media. Moroccan Journal of Chemistry, 10(3), 387-395. https://doi.org/10.48317/imist.prsm/morjchem-v10i3.32666

  • Hazri, H. (2022, April 2). Food security a matter of national security. New Straits Times. https://www.nst.com.my/opinion/columnists/2022/04/785343/food-security-matter-national-security

  • Hidayati, Y. A., Kurnani, T. B. A., Marlina, E. T., & Harlia, E. (2011). Kualitas pupuk cair hasil pengolahan feses sapi potong menggunakan Saccharomyces cereviceae [Liquid fertilizer quality produced by beef cattle feces fermentation using Saccharomyces cereviceae]. Jurnal Ilmu Ternak, 11(2), 104–107.

  • Ibrahim, M., Tasi’u, Y. R., Umma, M., & Dangora I. I. (2014). The effects of inorganic fertilizer on soil characteristics and production of egg plant (Solanum melongena L.) in Warawa area of Kano State. Standard Research Journal of Agricultural Sciences, 2(8), 129–135.

  • Kala, D. R., Rosenani, A. B., Fauziah, C. I., Ahmad, S. H., Radziah, O., & Rosazlin, A. (2011). Commercial organic fertilizers and their labeling in Malaysia. Malaysian Journal of Soil Science, 15, 147–157.

  • Mohd Kamaruddin, M. I. S., Abdul Mutalib, A., Ismail, Z., Ab-Latif, Z., & Che Man, S. I. (2021). Effects of chicken manure and shrimp paste on chili pepper (Capsicum frustescens) growth. Asian Journal of Vocational Education and Humanities, 2(2), 22–26. https://doi.org/10.53797/ajvah.v2I2.4.2021

  • Lal, R., Kimble, J. M., Follett, R. F., & Stewart, B. A. (Eds.). (1997). Soil processes and the carbon cycle (Vol. 11). CRC Press.

  • Leghari, S. J., Wahocho, N. A., Laghari, G. M., HafeezLaghari, A., MustafaBhabhan, G., HussainTalpur, K., & Lashari, A. A. (2016). Role of nitrogen for plant growth and development: A review. Advances in Environmental Biology, 10(9), 209–218.

  • Lesik, M. M. N. N., Dadi, O., Andira, G., & Laban, S. (2019). Nutrient analysis of liquid organic fertilizer from agricultural waste and rumen liquid. In IOP Conference Series: Earth and Environmental Science, (Vol 343, No. 1, p. 012178). IOP Publishing. https://doi.org/10.1088/1755-1315/343/1/012178

  • Maicas, S. (2020). The role of yeasts in fermentation processes. Microorganisms, 8(8), 1142. https://doi.org/10.3390/microorganisms8081142

  • Martínez-Alcántara, B., Martínez-Cuenca, M. R., Bermejo, A., Legaz, F., & Quiñones, A. (2016). Liquid organic fertilizers for sustainable agriculture: Nutrient uptake of organic versus mineral fertilizers in citrus trees. PLOS One, 11(10), e0161619. https://doi.org/10.1371/journal.pone.0161619

  • Mohd Zaini, N. S., Idris, H., Yaacob, J. S., Wan-Mohtar, W. A. A. Q. I., Samsudin, N. I. P., Abdul Sukor, A. S., Lim, E. J., & Abd Rahim, M. H. (2022). The potential of fermented food from Southeast Asia as biofertiliser. Horticulturae, 8(2), 102. https://doi.org/10.3390/horticulturae8020102

  • Murphy, H. F (1968). A report on the fertility status and other data on some soils of Ethiopia. http://www.sciepub.com/reference/98585

  • Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36. https://doi.org/10.1016/S0003-2670(00)88444-5

  • National Bureau of Agricultural Commodity and Food Standards. (2005) Thai Agricultural Standard TAS 9503-2005: Compost. ACFS. https://tas2go.acfs.go.th/upload_standard/47_en.pdf

  • Nhu, N. T. H., Chuen, N. L., & Riddech, N. (2018). The effects bio-fertilizer and liquid organic fertilizer on the growth of vegetables in the pot experiment. Chiang Mai Journal of Science, 45(3), 1257–1273.

  • O’Connor, A. (2007, June 12). The claim: Brown sugar is healthier than white sugar. The New York Times. https://www.nytimes.com/2007/06/12/health/nutrition/12real.html

  • Pangaribuan, D. H., Sarno., Hendarto, K., Priyanto., Darma, A. K., & Aprillia, T. (2019). Liquid organic fertilizer from plant extracts improves the growth, yield, and quality of sweet corn (Zea mays L. var. Saccharata). Pertanika Journal Tropical Agricultural Science, 42(3), 1157–1166.

  • Phibunwatthanawong, T., & Riddech, N. (2019). Liquid organic fertilizer production for growing vegetables under hydroponic condition. International Journal of Recycling of Organic Waste in Agriculture, 8, 369–380. https://doi.org/10.1007/s40093-019-0257-7

  • Refilda., Pranesa, T. O., Emil, S., & Indrawati. (2018). Utilization of fermented ngapi nut peel (Pithecellobium jiringa Prain) as natural fertilizer and pesticide on tomatoes (Solanum lycopersicum Mill) plant. In Journal of Physics: Conference Series (Vol. 1116, No. 4, p. 042029. IOP Publishing. https://doi.org/10.1088/1742-6596/1116/4/042029

  • Santi, S. S. (2008). Kajian pemanfaatan limbah untuk pupuk cair organik dengan proses fermentasi [Study of waste utilization for organic liquid fertilizer with fermentation process]. Jurnal Teknik Kimia, 4(2), 335-340. https://doi.org/10.33005/tekkim.v4i2.133

  • Slaton, N. A., Gbur, E. E., Wilson, C. E., & Norman, R. J. (2005). Rice response to granular zinc sources varying in water-soluble zinc. Soil Science Society of America Journal, 69(2), 443–452. https://doi.org/10.2136/SSSAJ2005.0443

  • Tan, L. M. (2015). Production of fertilizer using food wastes of vegetables and fruits [Unpublished Doctoral dissertation]. Universiti Malaysia Sarawak.

  • Team Phactual. (2019, April 8). Magnesium rich foods. https://www.phactual.com/fnen/magnesium-rich-foods/

  • Tilley, N. (2021, April 7). Copper and soil- How copper affects plants. Gardening Know How. https://www.gardeningknowhow.com/garden-how-to/soil-fertilizers/copper-for-the-garden.htm

  • Ullah, A., Mushtaq, A., Qamar, R. A., & Ali, Z. U. (2019). Extraction of soil conditioners from food waste. Science International, 31(2), 347–354.

  • United States Department of Agriculture. (2019). Leavening agents, yeast, baker’s, active dry. USDA. https://fdc.nal.usda.gov/fdc-app.html#/food-details/175043/nutrients

  • Wahida, W., & Suryaningsih, N. (2016). Analisis kandungan unsur hara pupuk organik cair dari limbah rumah tangga di Kabupaten Merauke [Analysis of nutrient content of liquid organic fertilizer from household waste in Merauke Regency]. Agricola, 6(1), 23–30. https://doi.org/10.35724/AG.V6I1.398

  • Walker, G. M., & Stewart, G. G. (2016). Saccharomyces cerevisiae in the production of fermented beverages. Beverages, 2(4), 30. https://doi.org/10.3390/beverages2040030

  • Wang, M., Zheng, Q., Shen, Q., & Guo, S. (2013). The critical role of potassium in plant stress response. International Journal of Molecular Sciences, 14(4), 7370-7390. https://doi.org/10.3390/ijms14047370

  • Zhang, L., Sun, X., Tian, Y., & Gong, X. (2013). Effects of brown sugar and calcium superphosphate on the secondary fermentation of green waste. Bioresource Technology, 131, 68–75. https://doi.org/10.1016/j.biortech.2012.10.059

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JTAS-2800-2023

Download Full Article PDF

Share this article

Related Articles