e-ISSN 2231-8542
ISSN 1511-3701
Zakiah Mustapha, Khamsah Suryati Mohd, Radziah Othman, Nik Nurnaeimah Nik Muhammad Nasir, Mohammad Moneruzzaman Khandaker, Hafizan Juahir and Mohd Fahmi Abu Bakar
Pertanika Journal of Tropical Agricultural Science, Volume 47, Issue 3, August 2024
DOI: https://doi.org/10.47836/pjtas.47.3.05
Keywords: Biofertilizer, microbes, nutrient, PGPR, plant, soil
Published on: 27 August 2024
The growing demand for agricultural products for food requirements caused the use of excessive inorganic chemical fertilisers, insecticides, fungicides, and pesticides for a quick and simple way to maximise and boost crop yield. This practice harmed food safety and caused the degradation of environmental, physical, and biological conditions. It has become alarming, and now is the time for a greener approach to increase agricultural output while minimising the use of inorganic chemical fertilisers. It was proven through many previous studies that using environmentally friendly biofertilisers has managed to increase crop yield while reducing the usage of chemical fertilisers. Plant growth-promoting rhizobacteria (PGPR) are mostly used in biofertiliser production because these types of microbes will enhance plant growth and yield by mobilising the available nutrients through several biological mechanisms, including fixation of atmospheric nitrogen, solubilisation, and mobilisation of phosphate and potassium, phytohormones production, disease suppression, and stress protection. Understanding their characteristics, biological mechanisms of action, and the nutritional and physical requirements for growth is important for successfully formulating and applying PGPR as a biofertiliser. The selection of the right PGPR with the desired characteristics, the ability to adapt to the environment, and the ideal formulation of the biofertiliser are the main criteria that should be emphasised when determining the success of biofertiliser. Knowledge and awareness regarding the use, benefits, and production of PGPR as a potential biofertiliser are important and should be explored to fulfil the crop’s nutritional requirements more economically and sustainably.
Anas, M., Liao, F., Verma, K. K., Sarwar, M. A., Mahmood, A., Chen, Z.-L., Li, Q., Zeng, X.-P., Liu, Y., & Li, Y.-R. (2020). Fate of nitrogen in agriculture and environment: Agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biological Research, 53, 47. https://doi.org/10.1186/s40659-020-00312-4
Ankenbauer, R. G., & Cox, C. D. (1988). Isolation and characterization of Pseudomonas aeruginosa mutants requiring salicylic acid for pyochelin biosynthesis. Journal of bacteriology, 170(11), 5364-5367. https://doi.org/10.1128/jb.170.11.5364-5367.1988
Ashraf, M., Hasnain, S., Berge, O., & Mahmood, T. (2004). Inoculating wheat seedling with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biology and Fertility of Soils, 40, 157-162. https://doi.org/10.1007/s00374-004-0766-y
Aslan, Y., Erduran, E., Mocan, H., Gedik, Y., Okten, A., Soylu, H., & Değer, O. (1997). Absorption of iron from grape molasses and ferrous sulfate: A comparative study in normal subjects and subjects with iron deficiency anemia. Turkish Journal of Pediatrics, 39(4), 465-471.
Atzorn, R., Crozier, A., Wheeler, C. T., & Sandberg, G. (1988). Production of gibberellins and indole 3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta, 175, 532-538. https://doi.org/10.1007/BF00393076
Baei, M. S., Najafpour, G. D., Younesi, H., Tabandeh, F., & Eisazadeh, H. (2009). Poly(3-hydroxybutyrate) synthesis by Cupriavidus necator DSMZ 545 utilizing various carbon sources. World Applied Science Journal, 7(2), 157-161.
Bakar, M. F. A., & Othman, A. S. (2022). Evaluation of transcriptome in Hevea brasiliensis and discovery of SNP and SSR from candidate genes related to cellulose and lignin biosynthesis. Malaysian Journal of Biochemistry and Molecular Biology, 2022(2), 49-57.
Baldwin, I. T., Zhang, Z.‐P., Diab, N., Ohnmeiss, T. E., McCloud, E. S., Lynds, G. Y., & Schmelz, E. A. (1997). Quantification, correlations and manipulation of wound‐induced changes in jasmonic acid and nicotine in Nicotiana sylvestris. Planta, 201, 397–404. https://doi.org/10.1007/s004250050082
Bastián, F., Cohen, A., Piccoli, P., Luna, V., Bottini, R., Baraldi, R., & Bottini, R. (1998). Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regulation, 24, 7–11. https://doi.org/10.1023/A:1005964031159
Batish, V. K., Lal, R., & Chander, H. (1990). Effect of nutritional factors on the production of antifungal substance by Lactococcus lactis subsp. lactis biovar diacetylactis. Australian Journal of Dairy Technology, 45(2), 74–76.
Biswas, J. C., Ladha, J. K., & Dazzo, F. B. (2000). Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Science Society of America Journal, 64(5), 1644-1650. https://doi.org/10.2136/sssaj2000.6451644x
Cappucino, J. G., & Sherman, N. (2004). Microbiology - A laboratory manual (7th ed.). Benjamin Cummings.
Conijn, J. G., Bindraban, P. S., Schröder, J. J., & Jongschaap, R. E. E. (2018). Can our food system meet food demand within planetary boundaries? Agriculture, Ecosystems and Environment, 251, 244-256. https://doi.org/10.1016/j.agee.2017.06.001
Curtin, L. V. (1983). Molasses - General consideration. https://rcrec-ona.ifas.ufl.edu/media/rcrec-onaifasufledu/pdf/Molasses---General-Considerations.pdf
del Carmen Orozco-Mosqueda, M., Santoyo, G., & Glick, B. R. (2023). Recent advances in the bacterial phytohormone modulation of plant growth. Plants, 12(3), 606. https://doi.org/10.3390/plants12030606
El-Enshasy, H. A., Mohamed, N. A., Farid, M. A., & El-Diwany, A. I. (2008). Improvement of erythromycin production by Saccharopolyspora erythraea in molasses based medium through cultivation medium optimization. Bioresource Technology, 99(10), 4263-4268. https://doi.org/10.1016/j.biortech.2007.08.050
Erturk, Y., Ercisli, S., Haznedar, A., & Cakmakci, R. (2010). Effects of plant growth promoting rhizobacteria (PGPR) on rooting and root growth of kiwifruit (Actinidia deliciosa) stem cuttings. Biological Research, 43(1), 91-98. https://doi.org/10.4067/S0716-97602010000100011
Etesami, H., Emami, S., & Alikhani, H. A. (2017). Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and future prospects - A review. Journal of Soil Science and Plant Nutrition, 17(4), 897-911. https://doi.org/10.4067/S0718-95162017000400005
Fasusi, O. A., Cruz, C., & Babalola, O. O. (2021). Agricultural sustainability: Microbial biofertilizers in rhizosphere management. Agriculture, 11(2), 163. https://doi.org/10.3390/agriculture11020163
García-Fraile, P., Carro, L., Robledo, M., Ramírez-Bahena, M.-H., Flores-Félix, J.-D., Fernández, M. T., Mateos, P. F., Rivas, R., Igual, J. M., Martínez-Molina, E., Peix, A., & Velázquez, E. (2012). Rhizobium promotes non-legumes growth and quality in several production steps: Towards a biofertilization of edible raw vegetables healthy for humans. PLOS One, 7(5), e38122. https://doi.org/10.1371/journal.pone.0038122
Goldstein, A. H. (1994). Involvement of the quinoprotein glucose dehydrohenase in the solubilization of exogenous phosphates by Gram-negative bacteria. In A. Torriani-Gorini, E. Yagiland, & S. Silver (Eds.), Phosphate in microorganisms: Cellular and molecular biology (pp. 197-203). ASM Press.
Govindasamy, V., Senthilkumar, M., Kumar, U., & Annapurna, K. (2008). PGPR-biotechnology for management of abiotic and biotic stresses in crop plants. In D. K. Maheshwari (Ed.), Potential microorganisms for sustainable agriculture (pp. 26-48). IK International Publishing.
Gutiérrez-Mañero, F. J., Ramos-Solano, B., Probanza, A., Mehouachi, J., Tadeo, F. R., & Talon, M. (2001). The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiologia Plantarum, 111(2), 206–211. https://doi.org/10.1034/j.1399-3054.2001.1110211.x
Heil, M., & Bostock, R. M. (2002). Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Annual Botany, 89(5), 503-512. https://doi.org/10.1093/aob/mcf076
Hofvendahl, K., & Hahn-Hägerdal, B. (2000). Factors affecting the fermentative lactic acid production from renewable resources. Enzyme and Microbial Technology, 26(2-4), 87-107. https://doi.org/10.1016/s0141-0229(99)00155-6
Illmer, P., & Schinner, F. (1992). Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biology and Biochemistry, 24(4), 389–395. https://doi.org/10.1016/0038-0717(92)90199-8
Ismail, F. S., Malahubban, M., Sajili, M. H., & Aziz, Z. F. A. (2016). Plant growth-promoting properties of cultivable endophytic root nodule bacterial isolates from Acacia mangium Wild. Research in Plant Biology, 6, 14-18. https://doi.org/10.19071/ripb.2016.v6.3141
Jones, S. E., & Lennon, J. T. (2010). Dormancy contributes to the maintenance of microbial diversity. Proceedings of the National Academy of Sciences, 107(13), 5881-5886. https://doi.org/10.1073/pnas.0912765107
Kalayu, G. (2019). Phosphate solubilizing microorganisms: Promising approach as biofertilizers. International Journal of Agronomy, 2019, 4917256. https://doi.org/10.1155/2019/4917256
Kaur, H. (2019). Forms of potassium in soil and their relationship with soil properties - A review. International Journal of Current Microbiology and Applied Sciences, 8(10), 1580-1586. https://doi.org/10.20546/ijcmas.2019.810.184
Khandelval, S., Maloo, S. R., & Joshi, E. (2023). Plant growth promoting rhizobacteria (PGPR) and their mechanisms of action for improvement of crop productivity. Strad Research, 10(2), 29-70. https://doi.org/10.37896/sr10.2/003
Kumar, S. V., Menon, S., Agarwal, H., & Gopalakrishnan, D. (2017). Characterization and optimization of bacterium isolated from soil samples for the production of siderophores. Resource-Efficient technologies, 3(4), 434-439. https://doi.org/10.1016/j.reffit.2017.04.004
Kusin, F. M., Akhir, N. I. M., Mohamat-Yusuff, F., & Awang, M. (2015). The impact of nitrogen fertilizer use on greenhouse gas emissions in an oil palm plantation associated with land use change. AtmÓsfera, 28(4), 243-250. https://doi.org/10.20937/ATM.2015.28.04.03
Lakshmanan, V., Shantharaj, D., Li, G., Seyfferth, A. L., Sherrier, D. J., & Bais, H. P. (2015). A natural rice rhizospheric bacterium abates arsenic accumulation in rice (Oryza sativa L.). Planta, 242, 1037-1050. https://doi.org/10.1007/s00425-015-2340-2
Lalitha, M., & Dhakshinamoorthy, M. (2014). Forms of soil potassium - A review. Agricultural Reviews, 35(1), 64-68. https://doi.org/10.5958/j.0976-0741.35.1.008
Lyu, D., Backer, R., Berrué, F., Martinez-Farina, C., Hui, J. P. M., & Smith, D. L. (2023). Plant growth-promoting rhizobacteria (PGPR) with microbial growth broth improve biomass and secondary metabolite accumulation of Cannabis sativa L. Journal of Agricultural and Food Chemistry, 71(19), 7268–7277. https://doi.org/10.1021/acs.jafc.2c06961
Maheshwari, D. K., Dheeman, S., & Agarwal, M. (2015). Phytohormone-producing PGPR for sustainable agriculture. In D. Maheshwari (Ed.), Bacterial metabolites in sustainable agroecosystem: Sustainable development and biodiversity (Vol. 12, pp. 159-182). Springer. https://doi.org/10.1007/978-3-319-24654-3_7
Meena, V. S., Maurya, B. R., Verma, J. P., Aeron, A., Kumar, A., Kim, K., & Bajpai, V. K. (2015). Potassium solubilizing rhizobacteria (KSR): Isolation, identification, and K-release dynamics from waste mica. Ecological Engineering, 81, 340-347. https://doi.org/10.1016/j.ecoleng.2015.04.065
Memon, Y. M., Fergus, I. F., Hughes, J. D., & Page, D. W. (1988). Utilization of non-exchangable soil potassium in relation to soil types, plant species and stage of growth. Australian Journal of Soil Research, 26(3), 489-496. https://doi.org/10.1071/SR9880489
Michailides, M. K., Tekerlekopoulou, A. G., Akratos, C. S., Coles, S., Pavlou, S., & Vayenas, D. V. (2015). Molasses as an efficient low-cost carbon source for biological Cr(VI) removal. Journal of Hazardous Materials, 281, 95-105. https://doi.org/10.1016/j.jhazmat.2014.08.004
Miljaković, D., Marinković, J., & Balešević-Tubić, S. (2020). The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms, 8(7), 1037. https://doi.org/10.3390/microorganisms8071037
Mohite, B. (2013). Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. Journal of Soil Science and Plant Nutrition, 13(3), 638-649. https://doi.org/10.4067/S0718-95162013005000051
Mok, D. W. S. (1994). Cytokinins: Chemistry, activity, and function. CRC Press. https://doi.org/10.1201/9781351071284
Mustapha, Z., Mat, N., Othman, R., & Zakaria, A. J. (2017). Quantification of BRIS soil bacteria at Tembila, Besut Terengganu. AGRIVITA Journal of Agricultural Science, 39(3), 252-256. https://doi.org/10.17503/agrivita.v39i3.1292
Mustapha, Z., Othman, R., Samsurrijal, N. L., Mat, N., Zakaria, A., & Mahmod, N. H. (2018). Determination of nitrogen fixing capacity of bacteria isolated from the rhizosphere of Acacia Mangium from the BRIS soil of Tembila, Besut, Terengganu, Malaysia. International Journal of Engineering and Technology, 7(4), 140-144.
Ngamau, C. N., Matiru, V. N., Tani, A., & Muthuri, C. W. (2014). Potential use of endophytic bacteria as biofertilizer for sustainable banana (Musa spp.) production. African Journal of Horticultural Science, 8, 1-11.
Om, A. C., Ghazali, A. H. A., Chan, L. K., & Ishak, Z. (2009). Microbial inoculation improves growth of oil palm plants (Elaeis guineensis Jacq.). Tropical Life Sciences Research, 20(2), 71–77.
Pieterse, C. M. J., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C. M., & Bakker, P. A. H. M. (2014). Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52, 347–375. https://doi.org/10.1146/annurev-phyto-082712-102340
Quan, Z.-X., Jin, Y.-S., Yin, C.-R., Lee, J. J., & Lee, S.-T. (2005). Hydrolyzed molasses as an external carbon source in biological nitrogen removal. Bioresource Technology, 96(15), 1690-1695. https://doi.org/10.1016/j.biortech.2004.12.033
Radzki, W., Mañero, F. J. G., Algar, E., García, J. A. L., García-Villaraco, A., & Solano, B. R. (2013). Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie van Leeuwenhoek, 104, 321–330. https://doi.org/10.1007/s10482-013-9954-9
Ren, D., Zuo, R., & Wood, T. K. (2005). Quorum-sensing antagonist (5Z)-4-bromo27 5-(bromomethylene) 3-butyl-2(5H)-furanone influences siderophore biosynthesis in 28 Pseudomonas putida and Pseudomonas aeruginosa. Applied Microbiology and Biotechnology, 66, 689–695. https://doi.org/10.1007/s00253-004-1691-6
Rodrigues, L. R., Teixeira, J. A., & Oliveira, R. (2006). Low-cost fermentative medium for biosurfactant production by probiotic bacteria. Biochemical Engineering Journal, 32(3), 135-142. https://doi.org/10.1016/j.bej.2006.09.012
Sangeeth, K. P., & Suseela Bhai, R. (2015). Integrated plant nutrient system – with special emphasis on mineral nutrition and biofertilizers for black pepper and cardamom - A review. Critical Reviews in Microbiology, 42(3), 439-453. https://doi.org/10.3109/1040841X.2014.958433
Sasirekha, B., & Srividya, S. (2016). Siderophore production by Pseudomonas aeruginosa FP6, a biocontrol strain for Rhizoctonia solani and Colletotrichum gloeosporioides causing diseases in chilli. Agriculture and Natural Resources, 50(4), 250-256. https://doi.org/10.1016/j.anres.2016.02.003
Shaharoona, B., Arshad, M., Waqas, R., & Khalid, A. (2011). Role of ethylene and plant growth-promoting rhizobacteria in stressed crop plants. In B. Venkateswarlu, A. Shanker, C. Shanker, & M. Maheswari (Eds.), Crop stress and its management: Perspectives and strategies (pp. 429-446). Springer. https://doi.org/10.1007/978-94-007-2220-0_12
Shahzad, R., Waqas, M., Khan, A. L., Asaf, S., Khan, M. A., Kang, S.-M., Yun, B.-W., & Lee, I.-J. (2016). Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiology and Biochemistry, 106, 236-243. https://doi.org/10.1016/j.plaphy.2016.05.006
Shameer, S., & Prasad, T. N. V. K. V. (2018). Plant growth promoting rhizobacteria for sustainable agricultural practices with special reference to biotic and abiotic stresses. Plant Growth Regulation, 84, 603–615. https://doi.org/10.1007/s10725-017-0365-1
Sharma, A., & Chetani, R. (2017). A review on the effect of organic and chemical fertilizers on plants. International Journal for Research in Applied Science and Engineering Technology, 5(2), 677-680. https://doi.org/10.22214/ijraset.2017.2103
Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate-solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2, 587. https://doi.org/10.1186/2193-1801-2-587
Siddiqui, Z. A. (2005). PGPR: Prospective biocontrol agents of plant pathogens. In Z. A. Siddiqui (Ed.), PGPR: Prospective biocontrol and biofertilization (pp. 111-142). Springer. https://doi.org/10.1007/1-4020-4152-7_4
Singh, A. K., Singh, G., Bhatt, R. P., Pant, S., Naglot, A., & Singh, L. (2011). Sugars waste, an alternative growth and complete medium for fast growing Rhizobium cells. African Journal of Microbiology Research, 5(20), 3289-3295. https://doi.org/10.5897/AJMR11.408
Soumare, A., Diedhiou, A. G., Thuita, M., Hafidi, M., Ouhdouch, Y., Gopalakrishnan, S., & Kouisni L. (2020). Exploiting biological nitrogen fixation: A route towards a sustainable agriculture. Plants, 9(8), 1011. https://doi.org/10.3390/plants9081011
Spaepan, S., Das, F., Luyten, E., Michiels J., & Vanderleyden, J. (2009). Indole-3-acetic -acid- regulated genes in Rhizobium etli CNPAF512. FEMS Microbiology Letters, 291(2), 195-200. https://doi.org/10.1111/j.1574-6968.2008.01453.x
Sparks, D. L. (1999). Bioavailability of soil potassium. In M. E. Sumner (Ed.), Handbook of soil science (pp. 38-52). CRC Press.
Sutigoolabud, P., Senoo, K., Ongprasert, S., Mizuno, T., Tanaka, A., Obata, H., Hisamatsu, M. (2004). Decontamination of chlorate in longan plantation soils by bio-stimulation with molasses amendment. Soil Science and Plant Nutrition, 50(2), 249-256. https://doi.org/10.1080/00380768.2004.10408474
Święciło, A., & Zych-Wężyk, I. (2013). Bacterial stress response as an adaptation to life in a soil environment. Polish Journal of Environmental Studies, 22(6), 1577-1587.
Vessey, J. K. (2003). Plant growth-promoting rhizobacteria as biofertilizer. Plant and Soil, 255, 571-586. https://doi.org/10.1023/A:1026037216893
Wani, P., Khan, M., & Zaidi, A. (2007). Co-inoculation of nitrogen fixing and phosphate solubilizing bacteria to promote growth, yield and nutrient uptake in chickpea. Acta Agronomica Hungarica, 55(3), 315–323. https://doi.org/10.1556/AAgr.55.2007.3.7
Zainuddin, N., Keni, M. F., Ibrahim, S. A. S., & Masri, M. M. M. (2022). Effect of integrated biofertilizers with chemical fertilizers on the oil palm growth and soil microbial diversity. Biocatalysis and Agricultural Biotechnology, 39, 102237. https://doi.org/10.1016/j.bcab.2021.102237
Zhang, C., & Kong, F. (2014). Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Applied Soil Ecology, 82, 18-25. https://doi.org/10.1016/j.apsoil.2014.05.002
ISSN 1511-3701
e-ISSN 2231-8542