e-ISSN 2231-8542
ISSN 1511-3701
Nur Syazwani Nadhirah Mohd Sofri, Noor Illi Mohamad Puad, Nik Nurul Adnina Nik Ahmad Sabri, Afiq Syazwan Abu Ubaidah, Fazlena Hamzah and Muhammad Yusuf Abduh
Pertanika Journal of Tropical Agricultural Science, Volume 47, Issue 3, August 2024
DOI: https://doi.org/10.47836/pjtas.47.3.12
Keywords: Cassava, Manihot esculenta Crantz, plant tissue culture, starch, systematic mapping study
Published on: 27 August 2024
Mass propagation of cassava on several hectares of arable land due to increasing demand for its starch is not feasible due to land availability, pests and disease invasion, and long cultivation period. Plant cell culture technology is a promising solution despite the scarcity of cassava callus culture for starch production applications. Therefore, a systematic mapping study (SMS) was performed to identify the applications of cassava tissue culture and its prospects in starch production and investigate the important parameters for cassava callus culture initiation. The SMS began with formulating research questions (RQs), conducting searches on various databases, collecting and screening related articles, and extracting and mapping the selected articles. A total of 56 of 589 articles in the initial searching phase were chosen to be used as references to answer each RQ. The extracted data indicates that cassava tissue culture was mostly used for micropropagation, while starch production from its tissue culture is still limited. Basal medium and plant growth regulators influence cassava callus culture initiation most. The findings of the SMS offer a better understanding of cassava tissue culture and the prospects of producing cassava starch.
Abdalla, N., Ragab, M. E., El-Miniawy, S. E.-D. M., & Taha, H. S. (2013). In vitro studies on cassava plant micropropagation of cassava (Manihot Esculenta Crantz). Journal of Applied Sciences Research, 9(1), 811–820.
Adewale, P., Yancheshmeh, M. S., & Lam, E. (2022). Starch modification for non-food, industrial applications: Market intelligence and critical review. Carbohydrate Polymers, 291, 119590. https://doi.org/10.1016/j.carbpol.2022.119590
Bello, O. A., Esan, E. B., & Obembe, O. O. (2018). Establishing surface sterilization protocol for nodal culture of Solanecio biafrae. In IOP Conference Series: Earth and Environmental Science (Vol. 210, No. 1, p. 012007). IOP Publishing. https://doi.org/10.1088/1755-1315/210/1/012007
Duraisamy, R., Natesan, S., Muthurajan, R., Gandhi, K., Lakshmanan, P., Karuppusamy, N., & Chokkappan, M. (2013). Molecular studies on the transmission of Indian cassava mosaic virus (ICMV) and Sri Lankan cassava mosaic virus (SLCMV) in cassava by Bemisia tabaci and cloning of ICMV and SLCMV replicase gene from cassava. Molecular Biotechnology, 53, 150–158. https://doi.org/10.1007/s12033-012-9503-1
Elibariki, G., Lupembe, M., Hosea, K., & Ndunguru, J. (2014). Evaluation of regeneration potentials of farmer- preferred cassava (Manihot esculenta Crantz) landraces to unlock cassava transformation barriers. International Journal of Agriculture and Crop Sciences, 7(9), 560–568.
Faye, A., Sagna, M., Kane, P. D., & Sane, D. (2015). Effects of different hormones on organogenesis in vitro of some varieties of cassava (Manihot esculenta Crantz) grown in Senegal. African Journal of Plant Science, 9(8), 305–312. https://doi.org/10.5897/ajps2014.1243
Fletcher, E. K. A., Amoako, T. N. E., & Twumasi, P. (2011). Effect of 2,4-D, explants type and cultivar on the callogenesis expression of cassava (Manihot esculenta Crantz) in Ghana. African Journal of Biotechnology, 10(46), 9396–9401. https://doi.org/10.5897/ajb10.2115
Fotso., Beni, E. H. D., Ornella, T. A., Carole, D. A., Desire, M. H., & Denis, O. N. (2014). Effect of exogenous phytohormones and sucrose on micropropagation and microtuberisation of Manihot esculenta Crantz var. TMS 96/0023. African Journal of Biotechnology, 13(39), 3966–3976. https://doi.org/10.5897/AJB2014.13938
Gusain, P., Uniyal, D. P., & Joga, R. (2021). Conservation and sutainable use of medicinal plants. In C. Egbuna, A. P. Mishra, & M. R. Goyal (Eds.), Preparation of phytopharmaceuticals for the management of disorders: The development of nutraceuticals and traditional medicine (pp. 409–427). Academic Press. https://doi.org/10.1016/B978-0-12-820284-5.00026-5
Howeler, R., Cain, P., Trumbore, L., & Hidajat, S. U. (2012). The challenge of large-scale cassava production. https://www.researchgate.net/publication/322160768_THE_CHALLENGE_OF_LARGE-SCALE_CASSAVA_PRODUCTION
Hussain, A., Qarshi, A. I., Nazir, H., & Ullah, I. (2012). Plant tissue culture: Current status and opportunities. In A. Leva & L. M. R. Rinaldi (Eds.), Recent advances in plant in vitro culture. IntechOpen. https://doi.org/10.5772/50568
Kidulile, C. E., Ateka, E. M., Alakonya, A. E., & Ndunguru, J. C. (2018). Efficacy of chemotherapy and thermotherapy in elimination of East African cassava mosaic virus from Tanzanian cassava landrace. Journal of Phytopathology, 166(10), 739–745. https://doi.org/10.1111/jph.12725
Lim, T. K. (2016). Edible medicinal and non-medicinal plants: Modified stems, rots, bulbs (Vol. 10). Springer. https://doi.org/10.1007/978-94-017-7276-1
Mahdi, H., & Edward, R. (2018). In vitro propagation of selected Malaysia cassava (Manihot esculenta Crantz) varieties by using nodal explants. Malaysian Applied Biology Journal, 47(1), 1–5.
Maruthi, M. N., Whitfield, E. C., Otti, G., Tumwegamire, S., Kanju, E., Legg, J. P., Mkamilo, G., Kawuki, R., Benesi, I., Zacarias, A., Munga, T., Mwatuni, F., & Mbugua, E. (2019). A method for generating virus-free cassava plants to combat viral disease epidemics in Africa. Physiological and Molecular Plant Pathology, 105, 77–87. https://doi.org/10.1016/j.pmpp.2018.09.002
Ngugi, M. P., Oduor, R. O., Omwoyo, R. O., Ngaji, J. M., Mgutu, A. J., & Cheruiyot, R. C. (2015). Regeneration of Kenyan cassava (Manihot Esculenta Crantz) genotypes. Journal of Plant Biochemistry and Physiology, 3(2), 1000147. https://doi.org/10.4172/2329-9029.1000147
Osena, G., Amugune, N. O., & Nyaboga, E. N. (2017). Genetic stability of cassava plants regenerated through organogenesis using microsatellite markers. Journal of Plant Sciences, 5(1), 19–28. https://doi.org/10.11648/j.jps.20170501.13
Parmar, A., Sturm, B., & Hensel, O. (2017). Crops that feed the world: Production and improvement of cassava for food, feed, and industrial uses. Food Security, 9, 907–927. https://doi.org/10.1007/s12571-017-0717-8
Perera, P. I. P., Ordoñez, C. A., Lopez-Lavalle, L. A. B., & Dedicova, B. (2014). A milestone in the doubled haploid pathway of cassava: A milestone in the doubled haploid pathway of cassava (Manihot esculenta Crantz): Cellular and molecular assessment of anther-derived structures. Protoplasma, 251, 233–246. https://doi.org/10.1007/s00709-013-0543-6
Petersen, K., Feldt, R., Mujtaba, S., & Mattsson, M. (2008). Systematic mapping studies in software engineering. In 12th International Conference on Evaluation and Assessment in Software Engineering (pp. 1-10). BCS Learning and Development Ltd. https://doi.org/10.14236/ewic/ease2008.8
Putri, A. I., Leksono, B., Windyarini, E., & Hasnah, T. M. (2019). Tissue culture sterilization of Callophylum inophyllum: Renewable energy resources. In AIP Conference Proceedings: International Conference on Biology and Applied Science (Vol. 2120, No. 1, p. 030004). AIP Publishing. https://doi.org/10.1063/1.5115608
Robyt, J. F. (2008). Starch: Structure, properties, chemistry, and enzymology. In B. O. Fraser-Reid, K. Tatsuta, & J. Thiem (Eds.), Glycoscience (pp. 1437–1472). Springer. https://doi.org/10.1007/978-3-540-30429-6_35
Sesay, J. V., Yamba, N. G. G., Sherman-Kamara, J., & Quee, D. D. (2018). Development of in vitro propagation protocol for some recalcitrant cassava (Manihot esculenta Crantz) genotypes in Sierra Leone. African Journal of Biotechnology, 17(18), 606–613. https://doi.org/10.5897/ajb2017.16330
Sessou, A. F., Kahia, J. W., Ateka, E., Houngue, J. A,M Dadjo, C., Njenga, P., & Ahanhanzo, C. (2019). Callus induction in three mosaic disease resistant cassava cultivars in Benin and genetic stability of the induced calli using simple sequence repeat (SSR) and sequence-characterized amplified region (SCAR) markers. African Journal of Biotechnology, 18(31), 1044–1053. https://doi.org/10.5897/ajb2019.16967
Smith, R. H. (2013). Plant tissue culture: Techniques and experiments (3rd ed.). Academic Press. https://doi.org/10.1016/C2011-0-04367-3
Syombua, E. D., Wanyonyi, C. N., Adero, M. O., Mbinda, W. M., Ngugi, M. P., Alakonya, A. E., & Oduor, R. O. (2019). Explant type and hormone regime influences somatic embryogenesis and regeneration in cassava. African Journal of Biotechnology, 18(25), 532–539. https://doi.org/10.5897/AJB2019.16853
Tokunaga, H., Anh, N. H., Dong, N. V., Ham, L. H., Hanh, N. T., Hung, N., Ishitani, M., Tuan, L. N., Utsumi, Y., Vu, N. A., & Seki, M. (2020). An efficient method of propagating cassava plants using aeroponic culture. Journal of Crop Improvement, 34(1), 64–83. https://doi.org/10.1080/15427528.2019.1673271
Vamadevan, V., & Bertoft, E. (2015). Structure-function relationships of starch components. Starch, 67(1–2), 55–68. https://doi.org/10.1002/star.201400188
Wu, X. H., Geng, M. T., Fan, J., Yao, Y., Min, Y., Li, R. M., Hu, X. W., Fu, S. P., & Guo, J. C. (2014). Effects of sucrose on tuberous root formation and saccharide accumulation in Manihot esculenta Crantz in vitro. Advanced Materials Research, 1010–1012, 225–228. https://doi.org/10.4028/www.scientific.net/AMR.1010-1012.225
Yao, Y., Min, Y., Geng, M. T., Wu, X. H., Hu, X. W., Fu, S. P., & Guo, J. C. (2013). The effects of calcium on the in vitro cassava storage root formation. Advanced Materials Research, 726–731, 4529–4533. https://doi.org/10.4028/www.scientific.net/AMR.726-731.4529
Zein, S., Salleh, N., & Grundy, J. (2016). A systematic mapping study of mobile application testing techniques. Journal of Systems and Software, 117, 334–356. https://doi.org/10.1016/j.jss.2016.03.065
ISSN 1511-3701
e-ISSN 2231-8542