PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 47 (3) Aug. 2024 / JTAS-2974-2023

 

The Effect of UV-B And UV-C Radiation on Contamination Rate and Shoot Proliferation of Tamban Pineapple Crown Explants (Ananas comosus L. Merr.)

Rizka Annisafitri, Raihani Wahdah and Hilda Susanti

Pertanika Journal of Tropical Agricultural Science, Volume 47, Issue 3, August 2024

DOI: https://doi.org/10.47836/pjtas.47.3.06

Keywords: Fruit, plant tissue culture, radiation, somaclonal variation

Published on: 27 August 2024

This study examines the effect of ultraviolet-B (UV-B) and ultraviolet-C (UV-C) radiation on contamination rate and shoot proliferation of Tamban pineapple crown explant. The experimental design was nested and completely randomized with a separate control. The first factor was the type of UV light, namely UV-B and UV-C. The second factor was the duration of UV light exposure, namely 10, 20, 30, and 40 min. This study was carried out from March to June 2023 at the Plant Tissue Culture Laboratory, Faculty of Agriculture, Lambung Mangkurat University, South Kalimantan, Indonesia. Observations were made on the contamination percentage, survival percentage, time of first shoot formation, percentage of explants able to regenerate shoots, and number of shoots. The results showed that UV light treatment decreased the contamination rate. Increasing the duration of UV light exposure decreased the contamination rate, delayed the formation of the first shoot, and affected the number of shoots. UV-B light exposure produced a higher number of shoots than UV-C light. These results suggest that UV-B and UV-C radiation have the potential to optimize surface sterilization protocol and promote somaclonal variation.

  • Abdelrahman, E., Takatori, K., Matsuda, Y., Tsukada, M., & Kirino, F. (2018). Fungicidal effects of ultraviolet light 254 nm irradiation on contaminated museum packing and storing materials. Biocontrol Science, 23(4), 177–186. https://doi.org/10.4265/bio.23.177

  • Acemi, A., Duman, Y. A., Karakuş, Y. Y., & Özen, F. (2018). A preliminary investigation on developmental and biochemical responses of Amsonia orientalis to ultraviolet-C irradiation. Advances in Horticultural Science, 32(4), 563–568. https://doi.org/10.13128/ahs-22468

  • Agogbua Josephine, U., & Osuji Julian, O. (2011). Split crown technique for mass propagation of smooth Cayenne pineapple in South-South Nigeria. African Journal of Plant Science, 5(10), 591–598.

  • Badan Pusat Statistik. (2024). Produksi tanaman buah-buahan, 2021-2023 [Fruit crop production, 2021-2023]. BPS. https://www.bps.go.id/id/statistics-table/2/NjIjMg==/produksi-tanaman-buah-buahan.html

  • Balai Penelitian Pertanian Lahan Rawa. (n.d.). Nenas Tamban: Unggulan lahan rawa pasang surut [Tamban pineapple: The flagship of tidal swamp land]. Balittra. https://repository.pertanian.go.id/server/api/core/bitstreams/bf44cd6e-7908-4986-858d-7f918caa61e4/content

  • Barbier, F. F., Cao, D., Fichtner, F., Weiste, C., Perez-Garcia, M.-D., Caradeuc, M., Le Gourrierec, J., Sakr, S., & Beveridge, C. A. (2021). HEXOKINASE1 signalling promotes shoot branching and interacts with cytokinin and strigolactone pathways. New Phytologist, 231(3), 1088–1104. https://doi.org/10.1111/nph.17427

  • Berli, F. J., Alonso, R., Bressan-Smith, R., & Bottini, R. (2013). UV-B impairs growth and gas exchange in grapevines grown in high altitude. Physiologia Plantarum, 149(1), 127–140. https://doi.org/10.1111/ppl.12012

  • Cahyana, D., & Destina, Y. (2013). Nanas rawa untuk industri [Swamp pineapple for industry]. Ministry of Agriculture Republic Indonesia. http://repository.pertanian.go.id:8080/server/api/core/bitstreams/2f529dee-2d30-4c3d-8455-5d3f08b3e4b6/content

  • Chen, X.-J., Xia, X.-J., Guo, X., Zhou, Y.-H., Shi, K., Zhou, J., & Yu, J.-Q. (2016). Apoplastic H2O2 plays a critical role in axillary bud outgrowth by altering auxin and cytokinin homeostasis in tomato plants. New Phytologist, 211(4), 1266–1278. https://doi.org/10.1111/nph.14015

  • Czégény, G., Wu, M., Dér, A., Eriksson, L. A., Strid, Å., & Hideg, É. (2014). Hydrogen peroxide contributes to the ultraviolet-B (280-315 nm) induced oxidative stress of plant leaves through multiple pathways. FEBS Letters, 588(14), 2255–2261. https://doi.org/10.1016/j.febslet.2014.05.005

  • Dai, T., Vrahas, M. S., Murray, C. K., & Hamblin, M. R. (2012). Ultraviolet C irradiation: An alternative antimicrobial approach to localized infections? Expert Review of Anti-Infective Therapy, 10(2), 185–195. https://doi.org/10.1586/eri.11.166

  • Dawood, M. F. A., Abu-Elsaoud, A. M., Sofy, M. R., Mohamed, H. I., & Soliman, M. H. (2022). Appraisal of kinetin spraying strategy to alleviate the harmful effects of UVC stress on tomato plants. Environmental Science and Pollution Research, 29, 52378–52398. https://doi.org/10.1007/s11356-022-19378-6

  • Domagalska, M. A., & Leyser, O. (2011). Signal integration in the control of shoot branching. Nature Reviews Molecular Cell Biology, 12, 211–221. https://doi.org/10.1038/nrm3088

  • Ferreira, C. D., Lang, G. H., da Silva Lindemann, I.., da Silva Timm, N., Hoffmann, J. F., Ziegler, V., & de Oliveira, M. (2021). Postharvest UV-C irradiation for fungal control and reduction of mycotoxins in brown, black, and red rice during long-term storage. Food Chemistry, 339, 127810. https://doi.org/10.1016/j.foodchem.2020.127810

  • Gomez-Roldan, V., Fermas, S., Brewer, P. B., Puech-Pagès, V., Dun, E. A., Pillot, J.-P., Letisse, F., Matusova, R., Danoun, S., Portais, J.-C., Bouwmeester, H., Bécard, G., Beveridge, C. A., Rameau, C., & Rochange, S. F. (2008). Strigolactone inhibition of shoot branching. Nature, 455, 189–194. https://doi.org/10.1038/nature07271

  • Gurzadyan, G. G., Görner, H., & Schulte-Frohlinde, D. (1995). Ultraviolet (193, 216 and 254 nm) photoinactivation of Escherichia coli strains with different repair deficiencies. Radiation Research, 141(3), 244–251.

  • Hayes, S., Velanis, C. N., Jenkins, G. I., & Franklin, K. A. (2014). UV-B detected by the UVR8 photoreceptor antagonizes auxin signaling and plant shade avoidance. Proceedings of the National Academy of Sciences of the United States of America, 111(32), 11894–11899. https://doi.org/10.1073/pnas.1403052111

  • Hollósy, F. (2002). Effects of ultraviolet radiation on plant cells. Micron, 33(2), 179–197. https://doi.org/10.1016/s0968-4328(01)00011-7

  • Jhahan, E., Bhattacharyya, S., Chaudhuri, A., Sarkar, N., Akhtar, S., & Chaudhuri, P. (2022). Optimization and application of UVC irradiation for prevention of fungal biodeterioration of vegetable tanned and chrome tanned leather. Journal of Leather Science and Engineering, 4, 28. https://doi.org/10.1186/s42825-022-00104-4

  • Katerova, Z., & Todorova, D. (2011). Effect of enhanced UV-C irradiation on the growth, malondialdehyde,hydrogen peroxide, free proline, polyamines, IAA, and IAA-oxidase activity in pea plants (Pisum sativum L.). Comptes Rendus de L’Academie Bulgare des Sciences, 64(11), 1555–1562.

  • Kovács, E., & Keresztes, A. (2002). Effect of gamma and UV-B/C radiation on plant cells. Micron, 33(2), 199–210. https://doi.org/10.1016/s0968-4328(01)00012-9

  • Leyser, O. (2009). The control of shoot branching: An example of plant information processing. Plant, Cell and Environment, 32(6), 694–703. https://doi.org/10.1111/j.1365-3040.2009.01930.x

  • Li, W., Niu, Y., Zheng, Y., & Wang, Z. (2022). Advances in the understanding of reactive oxygen species-dependent regulation on seed dormancy, germination, and deterioration in crops. Frontiers in Plant Science, 13, 826809. https://doi.org/10.3389/fpls.2022.826809

  • Ling, C., Wang, X., Li, Z., He, Y., & Li, Y. (2022). Effects and mechanism of enhanced UV-B radiation on the flag leaf angle of rice. International Journal of Molecular Sciences, 23(21), 12776. https://doi.org/10.3390/ijms232112776

  • Mallet, J., Laufs, P., Leduc, N., & Le Gourrierec, J. (2022). Photocontrol of axillary bud outgrowth by microRNAs: Current state-of-the-art and novel perspectives gained from the rosebush model. Frontiers in Plant Science, 12, 770363. https://doi.org/10.3389/fpls.2021.770363

  • Mengmeng, L., Baiqin, Z., Lei, H., & Zhen, W. (2022). Study on the inactivation effect and damage on bacteria of ultraviolet light with multi irradiance by UV-LED. https://www.researchsquare.com/article/rs-1999104/v1

  • Metwally, S. A., Shoaib, R. M., Hashish, Kh. I., & El-Tayeb, T. A. (2019). In vitro ultraviolet radiation effects on growth, chemical constituents and molecular aspects of Spathiphyllum plant. Bulletin of the National Research Centre, 43, 94. https://doi.org/10.1186/s42269-019-0126-6

  • Meyer, P., de Poel, B. V., & De Coninck, B. (2021). UV-B light and its application potential to reduce disease and pest incidence in crops. Horticulture Research, 8, 194. https://doi.org/10.1038/s41438-021-00629-5

  • Mohamed, M. M., El-Sherif, N. A., Sallam, A. M., & El-Sayed, E.-S. M. (2016). UV-A and UV-B-induced effects on tomato plant (Solanum lycopersicum). International Journal of Innovative Science, Engineering and Technology, 3(6), 118–123.

  • Normanly, J. (2010). Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Cold Spring Harbor Perspectives in Biology, 2(1), a001594. https://doi.org/10.1101/cshperspect.a001594

  • Pascual, J., Cañal, M. J., Escandón, M., Meijón, M., Weckwerth, W., & Valledor, L. (2017). Integrated physiological, proteomic, and metabolomic analysis of ultra violet (UV) stress responses and adaptation mechanisms in Pinus radiata. Molecular and Cellular Proteomics, 16(3), 485–501. https://doi.org/10.1074/mcp.M116.059436

  • Phanomchai, S., Noichinda, S., Kachonpadungkitti, Y., & Bodhipadma, K. (2021). Differing in vitro rooting and flowering responses of the Persian violet to low and high UV‐C irradiation. Plants, 10(12), 2671. https://doi.org/10.3390/plants10122671

  • Porcher, A., Guérin, V., Montrichard, F., Lebrec, A., Lothier, J., & Vian, A. (2020). Ascorbate glutathione-dependent H2O2 scavenging is an important process in axillary bud outgrowth in rosebush. Annals of Botany, 126(6), 1049–1062. https://doi.org/10.1093/aob/mcaa130

  • Py, C., Lacoeuilhe, J. J., & Teisson, C. (1987). The pineapple, cultivation, and uses. G. P. Maisonneuve et Larose.

  • Qian, M., Kalbina, I., Rosenqvist, E., Jansen, M. A. K., & Strid, Å. (2023). Supplementary UV-A and UV-B radiation differentially regulate morphology in Ocimum basilicum. Photochemical and Photobiological Sciences, 22, 2219–2230. https://doi.org/10.1007/s43630-023-00443-z

  • Qian, M., Rosenqvist, E., Prinsen, E., Pescheck, F., Flygare, A.-M., Kalbina, I., Jansen, M. A. K., & Strid, A. (2021). Downsizing in plants — UV light induces pronounced morphological changes in the absence of stress. Plant Physiology, 187(1), 378–395. https://doi.org/10.1093/plphys/kiab262

  • Rai, K., & Agrawal, S. B. (2017). Effects of UV-B radiation on morphological, physiological, and biochemical aspects of plants: An overview. Journal of Scientific Research, 61, 87–113.

  • Renger, G., Volker, M., Eckert, H. J., Fromme, R., Hohm-veit, S., & Gräber, P. (1989). On the mechanism of photosystem II deterioration by UV-B irradiation. Photochemistry and Photobiology, 49(1), 97–105. https://doi.org/10.1111/j.1751-1097.1989.tb04083.x

  • Ros, J., & Tevini, M. (1995). Interaction of UV-radiation and IAA during growth of seedlings and hypocotyl segments of sunflower. Journal of Plant Physiology, 146(3), 295–302. https://doi.org/10.1016/S0176-1617(11)82057-2

  • Sadeghianfar, P., Nazari, M., & Backes, G. (2019). Exposure to ultraviolet (UV-C) radiation increases germination rate of maize (Zea maize L.) and sugar beet (Beta vulgaris) seeds. Plants, 8(2), 49. https://doi.org/10.3390/plants8020049

  • Sarghein, S. H., Carapetian, J., & Khara, J. (2011). The effects of UV radiation on some structural and ultrastructural parameters in pepper (Capsicum longum A.DC.). Turkish Journal of Biology, 35(1), 69-77. https://doi.org/10.3906/biy-0903-11

  • Sriana, H., Wahdah, R., & Susanti, H. (2022). The success of two sterilant types and UV (ultraviolet) light exposure time on sterilization of Talas banana (Musa paradisiaca L. var. sapientum) corm explant. EnviroScienteae, 18(2), 151–159. https://doi.org/10.20527/es.v18i2.14252

  • Stapleton, A. E. (1992). Ultraviolet radiation and plants: Burning questions. The Plant Cell, 4(11), 1353–1358. https://doi.org/10.1105/tpc.4.11.1353

  • Takada, A., Matsushita, K., Horioka, S., Furuichi, Y., & Sumi, Y. (2017). Bactericidal effects of 310 nm ultraviolet light-emitting diode irradiation on oral bacteria. BMC Oral Health, 17, 96. https://doi.org/10.1186/s12903-017-0382-5

  • Tan, Y., Duan, Y., Chi, Q., Wang, R., Yin, Y., Cui, D., Li, S., Wang, A., Ma, R., Li, B., Jiao, Z., & Sun, H. (2023). The role of reactive oxygen species in plant response to radiation. International Journal of Molecular Sciences, 24(4), 3346. https://doi.org/10.3390/ijms24043346

  • Tomaszewska-Sowa, M., Figas, A., Keutgen, N., & Keutgen, A. J. (2015). Establishing an efficient explant superficial sterilization protocol for in vitro micropropagation of bear’s garlic (Allium ursinum L.). Herba Polonica, 61(4), 66–77. https://doi.org/10.1515/hepo-2015-0032

  • Umehara, M., Hanada, A., Yoshida, S., Akiyama, K., Arite, T., Takeda-Kamiya, N., Magome, H., Kamiya, Y., Shirasu, K., Yoneyama, K., Kyozuka, J., & Yamaguchi, S. (2008). Inhibition of shoot branching by new terpenoid plant hormones. Nature, 455, 195–200. https://doi.org/10.1038/nature07272

  • Vanhaelewyn, L., Van Der Straeten, D., De Coninck, B., & Vandenbussche, F. (2020). Ultraviolet radiation from a plant perspective: the plant-microorganism context. Frontiers in Plant Science, 11, 597642. https://doi.org/10.3389/fpls.2020.597642

  • Vass, I., Sass, L., Spetea, C., Bakou, A., Ghanotakis, D. F., & Petrouleas, V. (1996). UV-B-Induced inhibition of photosystem II electron transport studied by EPR and chlorophyll fluorescence. Impairment of donor and acceptor side components. Biochemistry, 35(27), 8964–8973. https://doi.org/10.1021/bi9530595

  • Xue, S., Zang, Y., Chen, J., Shang, S., Gao, L., & Tang, X. (2022). Ultraviolet-B radiation stress triggers reactive oxygen species and regulates the antioxidant defense and photosynthesis systems of intertidal red algae Neoporphyra haitanensis. Frontiers in Marine Science, 9, 1043462. https://doi.org/10.3389/fmars.2022.1043462

  • Yue, C., Cao, H., Hao, X., Zeng, J., Qian, W., Guo, Y., Ye, N., Yang, Y., & Wang, X. (2018). Differential expression of gibberellin- and abscisic acid-related genes implies their roles in the bud activity-dormancy transition of tea plants. Plant Cell Reports, 37, 425–441. https://doi.org/10.1007/s00299-017-2238-5

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JTAS-2974-2023

Download Full Article PDF

Share this article

Related Articles