e-ISSN 2231-8542
ISSN 1511-3701
Rizka Annisafitri, Raihani Wahdah and Hilda Susanti
Pertanika Journal of Tropical Agricultural Science, Volume 47, Issue 3, August 2024
DOI: https://doi.org/10.47836/pjtas.47.3.06
Keywords: Fruit, plant tissue culture, radiation, somaclonal variation
Published on: 27 August 2024
This study examines the effect of ultraviolet-B (UV-B) and ultraviolet-C (UV-C) radiation on contamination rate and shoot proliferation of Tamban pineapple crown explant. The experimental design was nested and completely randomized with a separate control. The first factor was the type of UV light, namely UV-B and UV-C. The second factor was the duration of UV light exposure, namely 10, 20, 30, and 40 min. This study was carried out from March to June 2023 at the Plant Tissue Culture Laboratory, Faculty of Agriculture, Lambung Mangkurat University, South Kalimantan, Indonesia. Observations were made on the contamination percentage, survival percentage, time of first shoot formation, percentage of explants able to regenerate shoots, and number of shoots. The results showed that UV light treatment decreased the contamination rate. Increasing the duration of UV light exposure decreased the contamination rate, delayed the formation of the first shoot, and affected the number of shoots. UV-B light exposure produced a higher number of shoots than UV-C light. These results suggest that UV-B and UV-C radiation have the potential to optimize surface sterilization protocol and promote somaclonal variation.
Abdelrahman, E., Takatori, K., Matsuda, Y., Tsukada, M., & Kirino, F. (2018). Fungicidal effects of ultraviolet light 254 nm irradiation on contaminated museum packing and storing materials. Biocontrol Science, 23(4), 177–186. https://doi.org/10.4265/bio.23.177
Acemi, A., Duman, Y. A., Karakuş, Y. Y., & Özen, F. (2018). A preliminary investigation on developmental and biochemical responses of Amsonia orientalis to ultraviolet-C irradiation. Advances in Horticultural Science, 32(4), 563–568. https://doi.org/10.13128/ahs-22468
Agogbua Josephine, U., & Osuji Julian, O. (2011). Split crown technique for mass propagation of smooth Cayenne pineapple in South-South Nigeria. African Journal of Plant Science, 5(10), 591–598.
Badan Pusat Statistik. (2024). Produksi tanaman buah-buahan, 2021-2023 [Fruit crop production, 2021-2023]. BPS. https://www.bps.go.id/id/statistics-table/2/NjIjMg==/produksi-tanaman-buah-buahan.html
Balai Penelitian Pertanian Lahan Rawa. (n.d.). Nenas Tamban: Unggulan lahan rawa pasang surut [Tamban pineapple: The flagship of tidal swamp land]. Balittra. https://repository.pertanian.go.id/server/api/core/bitstreams/bf44cd6e-7908-4986-858d-7f918caa61e4/content
Barbier, F. F., Cao, D., Fichtner, F., Weiste, C., Perez-Garcia, M.-D., Caradeuc, M., Le Gourrierec, J., Sakr, S., & Beveridge, C. A. (2021). HEXOKINASE1 signalling promotes shoot branching and interacts with cytokinin and strigolactone pathways. New Phytologist, 231(3), 1088–1104. https://doi.org/10.1111/nph.17427
Berli, F. J., Alonso, R., Bressan-Smith, R., & Bottini, R. (2013). UV-B impairs growth and gas exchange in grapevines grown in high altitude. Physiologia Plantarum, 149(1), 127–140. https://doi.org/10.1111/ppl.12012
Cahyana, D., & Destina, Y. (2013). Nanas rawa untuk industri [Swamp pineapple for industry]. Ministry of Agriculture Republic Indonesia. http://repository.pertanian.go.id:8080/server/api/core/bitstreams/2f529dee-2d30-4c3d-8455-5d3f08b3e4b6/content
Chen, X.-J., Xia, X.-J., Guo, X., Zhou, Y.-H., Shi, K., Zhou, J., & Yu, J.-Q. (2016). Apoplastic H2O2 plays a critical role in axillary bud outgrowth by altering auxin and cytokinin homeostasis in tomato plants. New Phytologist, 211(4), 1266–1278. https://doi.org/10.1111/nph.14015
Czégény, G., Wu, M., Dér, A., Eriksson, L. A., Strid, Å., & Hideg, É. (2014). Hydrogen peroxide contributes to the ultraviolet-B (280-315 nm) induced oxidative stress of plant leaves through multiple pathways. FEBS Letters, 588(14), 2255–2261. https://doi.org/10.1016/j.febslet.2014.05.005
Dai, T., Vrahas, M. S., Murray, C. K., & Hamblin, M. R. (2012). Ultraviolet C irradiation: An alternative antimicrobial approach to localized infections? Expert Review of Anti-Infective Therapy, 10(2), 185–195. https://doi.org/10.1586/eri.11.166
Dawood, M. F. A., Abu-Elsaoud, A. M., Sofy, M. R., Mohamed, H. I., & Soliman, M. H. (2022). Appraisal of kinetin spraying strategy to alleviate the harmful effects of UVC stress on tomato plants. Environmental Science and Pollution Research, 29, 52378–52398. https://doi.org/10.1007/s11356-022-19378-6
Domagalska, M. A., & Leyser, O. (2011). Signal integration in the control of shoot branching. Nature Reviews Molecular Cell Biology, 12, 211–221. https://doi.org/10.1038/nrm3088
Ferreira, C. D., Lang, G. H., da Silva Lindemann, I.., da Silva Timm, N., Hoffmann, J. F., Ziegler, V., & de Oliveira, M. (2021). Postharvest UV-C irradiation for fungal control and reduction of mycotoxins in brown, black, and red rice during long-term storage. Food Chemistry, 339, 127810. https://doi.org/10.1016/j.foodchem.2020.127810
Gomez-Roldan, V., Fermas, S., Brewer, P. B., Puech-Pagès, V., Dun, E. A., Pillot, J.-P., Letisse, F., Matusova, R., Danoun, S., Portais, J.-C., Bouwmeester, H., Bécard, G., Beveridge, C. A., Rameau, C., & Rochange, S. F. (2008). Strigolactone inhibition of shoot branching. Nature, 455, 189–194. https://doi.org/10.1038/nature07271
Gurzadyan, G. G., Görner, H., & Schulte-Frohlinde, D. (1995). Ultraviolet (193, 216 and 254 nm) photoinactivation of Escherichia coli strains with different repair deficiencies. Radiation Research, 141(3), 244–251.
Hayes, S., Velanis, C. N., Jenkins, G. I., & Franklin, K. A. (2014). UV-B detected by the UVR8 photoreceptor antagonizes auxin signaling and plant shade avoidance. Proceedings of the National Academy of Sciences of the United States of America, 111(32), 11894–11899. https://doi.org/10.1073/pnas.1403052111
Hollósy, F. (2002). Effects of ultraviolet radiation on plant cells. Micron, 33(2), 179–197. https://doi.org/10.1016/s0968-4328(01)00011-7
Jhahan, E., Bhattacharyya, S., Chaudhuri, A., Sarkar, N., Akhtar, S., & Chaudhuri, P. (2022). Optimization and application of UVC irradiation for prevention of fungal biodeterioration of vegetable tanned and chrome tanned leather. Journal of Leather Science and Engineering, 4, 28. https://doi.org/10.1186/s42825-022-00104-4
Katerova, Z., & Todorova, D. (2011). Effect of enhanced UV-C irradiation on the growth, malondialdehyde,hydrogen peroxide, free proline, polyamines, IAA, and IAA-oxidase activity in pea plants (Pisum sativum L.). Comptes Rendus de L’Academie Bulgare des Sciences, 64(11), 1555–1562.
Kovács, E., & Keresztes, A. (2002). Effect of gamma and UV-B/C radiation on plant cells. Micron, 33(2), 199–210. https://doi.org/10.1016/s0968-4328(01)00012-9
Leyser, O. (2009). The control of shoot branching: An example of plant information processing. Plant, Cell and Environment, 32(6), 694–703. https://doi.org/10.1111/j.1365-3040.2009.01930.x
Li, W., Niu, Y., Zheng, Y., & Wang, Z. (2022). Advances in the understanding of reactive oxygen species-dependent regulation on seed dormancy, germination, and deterioration in crops. Frontiers in Plant Science, 13, 826809. https://doi.org/10.3389/fpls.2022.826809
Ling, C., Wang, X., Li, Z., He, Y., & Li, Y. (2022). Effects and mechanism of enhanced UV-B radiation on the flag leaf angle of rice. International Journal of Molecular Sciences, 23(21), 12776. https://doi.org/10.3390/ijms232112776
Mallet, J., Laufs, P., Leduc, N., & Le Gourrierec, J. (2022). Photocontrol of axillary bud outgrowth by microRNAs: Current state-of-the-art and novel perspectives gained from the rosebush model. Frontiers in Plant Science, 12, 770363. https://doi.org/10.3389/fpls.2021.770363
Mengmeng, L., Baiqin, Z., Lei, H., & Zhen, W. (2022). Study on the inactivation effect and damage on bacteria of ultraviolet light with multi irradiance by UV-LED. https://www.researchsquare.com/article/rs-1999104/v1
Metwally, S. A., Shoaib, R. M., Hashish, Kh. I., & El-Tayeb, T. A. (2019). In vitro ultraviolet radiation effects on growth, chemical constituents and molecular aspects of Spathiphyllum plant. Bulletin of the National Research Centre, 43, 94. https://doi.org/10.1186/s42269-019-0126-6
Meyer, P., de Poel, B. V., & De Coninck, B. (2021). UV-B light and its application potential to reduce disease and pest incidence in crops. Horticulture Research, 8, 194. https://doi.org/10.1038/s41438-021-00629-5
Mohamed, M. M., El-Sherif, N. A., Sallam, A. M., & El-Sayed, E.-S. M. (2016). UV-A and UV-B-induced effects on tomato plant (Solanum lycopersicum). International Journal of Innovative Science, Engineering and Technology, 3(6), 118–123.
Normanly, J. (2010). Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Cold Spring Harbor Perspectives in Biology, 2(1), a001594. https://doi.org/10.1101/cshperspect.a001594
Pascual, J., Cañal, M. J., Escandón, M., Meijón, M., Weckwerth, W., & Valledor, L. (2017). Integrated physiological, proteomic, and metabolomic analysis of ultra violet (UV) stress responses and adaptation mechanisms in Pinus radiata. Molecular and Cellular Proteomics, 16(3), 485–501. https://doi.org/10.1074/mcp.M116.059436
Phanomchai, S., Noichinda, S., Kachonpadungkitti, Y., & Bodhipadma, K. (2021). Differing in vitro rooting and flowering responses of the Persian violet to low and high UV‐C irradiation. Plants, 10(12), 2671. https://doi.org/10.3390/plants10122671
Porcher, A., Guérin, V., Montrichard, F., Lebrec, A., Lothier, J., & Vian, A. (2020). Ascorbate glutathione-dependent H2O2 scavenging is an important process in axillary bud outgrowth in rosebush. Annals of Botany, 126(6), 1049–1062. https://doi.org/10.1093/aob/mcaa130
Py, C., Lacoeuilhe, J. J., & Teisson, C. (1987). The pineapple, cultivation, and uses. G. P. Maisonneuve et Larose.
Qian, M., Kalbina, I., Rosenqvist, E., Jansen, M. A. K., & Strid, Å. (2023). Supplementary UV-A and UV-B radiation differentially regulate morphology in Ocimum basilicum. Photochemical and Photobiological Sciences, 22, 2219–2230. https://doi.org/10.1007/s43630-023-00443-z
Qian, M., Rosenqvist, E., Prinsen, E., Pescheck, F., Flygare, A.-M., Kalbina, I., Jansen, M. A. K., & Strid, A. (2021). Downsizing in plants — UV light induces pronounced morphological changes in the absence of stress. Plant Physiology, 187(1), 378–395. https://doi.org/10.1093/plphys/kiab262
Rai, K., & Agrawal, S. B. (2017). Effects of UV-B radiation on morphological, physiological, and biochemical aspects of plants: An overview. Journal of Scientific Research, 61, 87–113.
Renger, G., Volker, M., Eckert, H. J., Fromme, R., Hohm-veit, S., & Gräber, P. (1989). On the mechanism of photosystem II deterioration by UV-B irradiation. Photochemistry and Photobiology, 49(1), 97–105. https://doi.org/10.1111/j.1751-1097.1989.tb04083.x
Ros, J., & Tevini, M. (1995). Interaction of UV-radiation and IAA during growth of seedlings and hypocotyl segments of sunflower. Journal of Plant Physiology, 146(3), 295–302. https://doi.org/10.1016/S0176-1617(11)82057-2
Sadeghianfar, P., Nazari, M., & Backes, G. (2019). Exposure to ultraviolet (UV-C) radiation increases germination rate of maize (Zea maize L.) and sugar beet (Beta vulgaris) seeds. Plants, 8(2), 49. https://doi.org/10.3390/plants8020049
Sarghein, S. H., Carapetian, J., & Khara, J. (2011). The effects of UV radiation on some structural and ultrastructural parameters in pepper (Capsicum longum A.DC.). Turkish Journal of Biology, 35(1), 69-77. https://doi.org/10.3906/biy-0903-11
Sriana, H., Wahdah, R., & Susanti, H. (2022). The success of two sterilant types and UV (ultraviolet) light exposure time on sterilization of Talas banana (Musa paradisiaca L. var. sapientum) corm explant. EnviroScienteae, 18(2), 151–159. https://doi.org/10.20527/es.v18i2.14252
Stapleton, A. E. (1992). Ultraviolet radiation and plants: Burning questions. The Plant Cell, 4(11), 1353–1358. https://doi.org/10.1105/tpc.4.11.1353
Takada, A., Matsushita, K., Horioka, S., Furuichi, Y., & Sumi, Y. (2017). Bactericidal effects of 310 nm ultraviolet light-emitting diode irradiation on oral bacteria. BMC Oral Health, 17, 96. https://doi.org/10.1186/s12903-017-0382-5
Tan, Y., Duan, Y., Chi, Q., Wang, R., Yin, Y., Cui, D., Li, S., Wang, A., Ma, R., Li, B., Jiao, Z., & Sun, H. (2023). The role of reactive oxygen species in plant response to radiation. International Journal of Molecular Sciences, 24(4), 3346. https://doi.org/10.3390/ijms24043346
Tomaszewska-Sowa, M., Figas, A., Keutgen, N., & Keutgen, A. J. (2015). Establishing an efficient explant superficial sterilization protocol for in vitro micropropagation of bear’s garlic (Allium ursinum L.). Herba Polonica, 61(4), 66–77. https://doi.org/10.1515/hepo-2015-0032
Umehara, M., Hanada, A., Yoshida, S., Akiyama, K., Arite, T., Takeda-Kamiya, N., Magome, H., Kamiya, Y., Shirasu, K., Yoneyama, K., Kyozuka, J., & Yamaguchi, S. (2008). Inhibition of shoot branching by new terpenoid plant hormones. Nature, 455, 195–200. https://doi.org/10.1038/nature07272
Vanhaelewyn, L., Van Der Straeten, D., De Coninck, B., & Vandenbussche, F. (2020). Ultraviolet radiation from a plant perspective: the plant-microorganism context. Frontiers in Plant Science, 11, 597642. https://doi.org/10.3389/fpls.2020.597642
Vass, I., Sass, L., Spetea, C., Bakou, A., Ghanotakis, D. F., & Petrouleas, V. (1996). UV-B-Induced inhibition of photosystem II electron transport studied by EPR and chlorophyll fluorescence. Impairment of donor and acceptor side components. Biochemistry, 35(27), 8964–8973. https://doi.org/10.1021/bi9530595
Xue, S., Zang, Y., Chen, J., Shang, S., Gao, L., & Tang, X. (2022). Ultraviolet-B radiation stress triggers reactive oxygen species and regulates the antioxidant defense and photosynthesis systems of intertidal red algae Neoporphyra haitanensis. Frontiers in Marine Science, 9, 1043462. https://doi.org/10.3389/fmars.2022.1043462
Yue, C., Cao, H., Hao, X., Zeng, J., Qian, W., Guo, Y., Ye, N., Yang, Y., & Wang, X. (2018). Differential expression of gibberellin- and abscisic acid-related genes implies their roles in the bud activity-dormancy transition of tea plants. Plant Cell Reports, 37, 425–441. https://doi.org/10.1007/s00299-017-2238-5
ISSN 1511-3701
e-ISSN 2231-8542