PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 47 (3) Aug. 2024 / JTAS-2953-2023

 

Optimization of Medium for Lipid Production from Lipomyces maratuensis InaCC Y720 Using Statistical Experiment Design

Liya Audinah, Atit Kanti and Miftahul Ilmi

Pertanika Journal of Tropical Agricultural Science, Volume 47, Issue 3, August 2024

DOI: https://doi.org/10.47836/pjtas.47.3.19

Keywords: Initial media, nutrients, oleaginous yeast, optimized media, response surface methodology, Taguchi method

Published on: 27 August 2024

Lipomyces maratuensis InaCC Y720 is a potential novel oleaginous yeast. Media-based production optimization has never been carried out using this strain. This study aims to define an optimized medium from 12 medium component factors, where the Taguchi method is used for screening significant factors of medium and the response surface methodology (RSM) is used to optimize the concentration of significant factors. According to Taguchi, glucose, yeast extract, and magnesium sulfate (MgSO4) have a significant influence on lipid accumulation, with their concentrations maintained at optimal levels through RSM optimization. Conversely, potassium dihydrogen phosphate, sodium hydrogen phosphate, and calcium chloride inhibit lipid accumulation, and copper(II) sulfate has the least influence, categorizing them as eliminated factors. The RSM-optimized medium increased lipid content by 3.6-fold compared to the initial medium. Glucose and yeast extract showed a positive correlation with lipid accumulation, suggesting potential for further optimization, while the optimum concentration for MgSO4 was 0.15 g/L. This study is intended to serve as a reference for increasing lipid accumulation by L. maratuensis InaCC Y720.

  • Agustriana, E., Juanssilfero, A. B., Andriani, A., Fahrurrozi., Pangestu, R., & Yopi. (2020). Single cell oil production by wild type strain Lipomyces starkeyi Y604. In IOP Conference Series: Earth and Environmental Science (Vol. 439, No. 1, p. 012002). IOP Publishing. https://doi.org/10.1088/1755-1315/439/1/012002

  • Anandan, R., Dharumadurai, D., & Manogaran, G. P. (2016). An introduction to Actinobacteria. In D. Dhanasekaran & Y. Jiang (Eds.), Actinobacteria - Basics and biotechnological applications. IntechOpen. https://doi.org/10.5772/62329

  • Ardiyanti, C. A. P., & Guntoro. (2019). Yeast extract production from spent brewer’s yeast. BIOEDUKASI: Jurnal Pendidikan Biologi, 12(1), 52–60. https://doi.org/10.20961/bioedukasi-uns.v12i1.27404

  • Arigony, A. L. V., de Oliveira, I. M., Machado, M., Bordin, D. L., Bergter, L., Prá, D., & Henriques, J. A. P. (2013). The influence of micronutrients in cell culture: A reflection on viability and genomic stability. BioMed Research International, 2013, 597828. https://doi.org/10.1155/2013/597282

  • Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–927. https://doi.org/10.1139/o59-099

  • Braunwald, T., Schwemmlein, L., Graeff-Hönninger, S., French, W. T., Hernandez, R., Holmes, W. E., & Claupein, W. (2013). Effect of different C/N ratios on carotenoid and lipid production by Rhodotorula glutinis. Applied Microbiology and Biotechnology, 97, 6581–6588. https://doi.org/10.1007/s00253-013-5005-8

  • Duman-Özdamar, Z. E., dos Santos, V. A. P. M., Hugenholtz, J., & Suarez-Diez, M. (2022). Tailoring and optimizing fatty acid production by oleaginous yeasts through the systematic exploration of their physiological fitness. Microbial Cell Factories, 21, 228. https://doi.org/10.1186/s12934-022-01956-5

  • Dzurendova, S., Zimmermann, B., Kohler, A., Reitzel, K., Nielsen, U. G., Dupuy-Galet, B. X., Leivers, S., Horn, S. J., & Shapaval, V. (2021). Calcium affects polyphosphate and lipid accumulation in Mucoromycota fungi. Journal of Fungi, 7(4), 300. https://doi.org/10.3390/jof7040300

  • Dzurendova, S., Zimmermann, B., Tafintseva, V., Kohler, A., Horn, S. J., & Shapaval, V. (2020). Metal and phosphate ions show remarkable influence on the biomass production and lipid accumulation in oleaginous Mucor circinelloides. Journal of Fungi, 6(4), 260. https://doi.org/10.3390/jof6040260

  • El Kantar, S., Khelfa, A., Vorobiev, E., & Koubaa, M. (2021). Strategies for increasing lipid accumulation and recovery from Y. lipolytica: A review. Oilseeds and fats, Crops and Lipids, 28, 51. https://doi.org/10.1051/ocl/2021038

  • Granger, L.-M., Perlot, P., Goma, G., & Pareilleux, A. (1993). Effect of various nutrient limitations on fatty acid production by Rhodotorula glutinis. Applied Microbiology and Biotechnology, 38, 784–789. https://doi.org/10.1007/BF00167145

  • Hamzaçebi, C. (2021). Taguchi method as a robust design tool. In P. Li, P. A. R. Pereira, & H. Navas (Eds.), Quality control - Intelligent manufacturing, robust design and charts. IntechOpen. https://doi.org/10.5772/intechopen.94908

  • Holdsworth, J. E., & Ratledge, C. (1988). Lipid turnover in oleaginous yeasts. Microbiology, 134(2), 339–346. https://doi.org/10.1099/00221287-134-2-339

  • Juanssilfero, A. B., Salsabila, P., Agustriana, E., Andriani, A., Fahrurrozi., Perwitasari, U., & Sutrisno, A. (2021). Microbial lipid production by the yeast Lipomyces starkeyi InaCC Y604 grown on various carbon sources. In IOP Conference Series: Earth and Environmental Science (Vol. 762, No. 1, p. 012073). IOP Publishing. https://doi.org/10.1088/1755-1315/762/1/012073

  • Lopes, H. J. S., Bonturi, N., Kerkhoven, E. J., Miranda, E. A., & Lahtvee, P.-J. (2020). C/N ratio and carbon source-dependent lipid production profiling in Rhodotorula toruloides. Applied Microbiology and Biotechnology, 104, 2639–2649. https://doi.org/10.1007/s00253-020-10386-5

  • Manikan, V., Kalil, M. S., Omar, O., Omar, O., Abdul Kader, A. J., & Abdul Hamid, A. (2014). Effects of Mg2+, Fe3+, Mn2+ and Cu2+ ions on lipid accumulation by Cunninghamella bainieri 2A1. Sains Malaysiana, 43(3), 443-449.

  • Mhlongo, S. I., Ezeokoli, O. T., Roopnarain, A., Ndaba, B., Sekoai, P. T., Habimana, O., & Pohl, C. H. (2021). The potential of single-cell oils derived from filamentous fungi as alternative feedstock sources for biodiesel production. Frontiers in Microbiology, 12, 637381. https://doi.org/10.3389/fmicb.2021.637381

  • Minitab. (n.d.a). Interpret the key results for analyze Taguchi design. https://support.minitab.com/en-us/minitab/help-and-how-to/statistical-modeling/doe/how-to/taguchi/analyze-taguchi-design/interpret-the-results/key-results/

  • Minitab. (n.d.b). Interpret the key results for Normality test. https://support.minitab.com/en-us/minitab/21/help-and-how-to/statistics/basic-statistics/how-to/normality-test/interpret-the-results/key-results/

  • Minitab. (n.d.c). Lack-of-fit and lack-of-fit tests. https://support.minitab.com/en-us/minitab/21/help-and-how-to/statistical-modeling/regression/supporting-topics/regression-models/lack-of-fit-and-lack-of-fit-tests/

  • Mondala, A. H., Hernandez, R., French, T., McFarland, L., Santo Domingo, J. W., Meckes, M., Ryu, H., & Iker, B. (2012). Enhanced lipid and biodiesel production from glucose‐fed activated sludge: Kinetics and microbial community analysis. AIChE Journal, 58(4), 1279–1290. https://doi.org/10.1002/aic.12655

  • Morales‐Palomo, S., Tomás‐Pejó, E., & González‐Fernández, C. (2023). Phosphate limitation as crucial factor to enhance yeast lipid production from short‐chain fatty acids. Microbial Biotechnology, 16(2), 372–380. https://doi.org/10.1111/1751-7915.14197

  • Muñoz-Huerta, R. F., Guevara-Gonzalez, R. G., Contreras-Medina, L. M., Torres-Pacheco, I., Prado-Olivarez, J., & Ocampo-Velazquez, R. V. (2013). A review of methods for sensing the nitrogen status in plants: Advantages, disadvantages and recent advances. Sensors, 13(8), 10823–10843. https://doi.org/10.3390/s130810823

  • Ouedraogo, N., Savadogo, A., Somda, M. K., Tapsoba, F., Zongo, C., & Traore, A. S. (2017). Effect of mineral salts and nitrogen source on yeast (Candida utilis NOY1) biomass production using tubers wastes. African Journal of Biotechnology, 16(8), 359–365. https://doi.org/10.5897/AJB2016.15801

  • Papanikolaou, S., Muniglia, L., Chevalot, I., Aggelis, G., & Marc, I. (2002). Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. Journal of Applied Microbiology, 92(4), 737–744. https://doi.org/10.1046/j.1365-2672.2002.01577.x

  • Perli, T., Wronska, A. K., Ortiz‐Merino, R. A., Pronk, J. T., & Daran, J.-M. (2020). Vitamin requirements and biosynthesis in Saccharomyces cerevisiae. Yeast, 37(4), 283–304. https://doi.org/10.1002/yea.3461

  • Qin, L., Liu, L., Zeng, A.-P., & Wei, D. (2017). From low-cost substrates to Single Cell Oils synthesized by oleaginous yeasts. Bioresource Technology, 245(Part B), 1507–1519. https://doi.org/10.1016/j.biortech.2017.05.163

  • Roy, R. K. (1990). A primer on the Taguchi method. Society of Manufacturing Engineers.

  • Šajbidor, J., Koželouhov’a, D., & Ĉert’ik, M. (1992). Influence of some metal ions on the lipid content and arachidonic acid production by Mortierella sp. Folia Microbiologica, 37, 404–406. https://doi.org/10.1007/BF02899897

  • Sarkar, S., Bhowmick, T. K., & Gayen, K. (2023). Enhancement for the synthesis of bio-energy molecules (carbohydrates and lipids) in Desmodesmus subspicatus: Experiments and optimization techniques. Preparative Biochemistry and Biotechnology, 54(3), 343-357. https://doi.org/10.1080/10826068.2023.2241898

  • Shuib, S., Wan Nawi, W. N. N., Taha, E. M., Omar, O., Abdul Kader, A. J., Kalil, M. S., & Abdul Hamid, A. (2014). Strategic feeding of ammonium and metal ions for enhanced GLA-rich lipid accumulation in Cunninghamella bainieri 2A1. The Scientific World Journal, 2014, 173574. https://doi.org/10.1155/2014/173574

  • Tomé, D. (2021). Yeast extracts: Nutritional and flavoring food ingredients. ACS Food Science and Technology, 1(4), 487–494. https://doi.org/10.1021/acsfoodscitech.0c00131

  • Wang, W.-A., Liu, W.-X., Durnaoglu, S., Lee, S.-K., Lian, J., Lehner, R., Ahnn, J., Agellon, L. B., & Michalak, M. (2017). Loss of calreticulin uncovers a critical role for calcium in regulating cellular lipid homeostasis. Scientific Reports, 7, 5941. https://doi.org/10.1038/s41598-017-05734-x

  • Wood, I. P., Elliston, A., Ryden, P., Bancroft, I., Roberts, I. N., & Waldron, K. W. (2012). Rapid quantification of reducing sugars in biomass hydrolysates: Improving the speed and precision of the dinitrosalicylic acid assay. Biomass and Bioenergy, 44, 117–121. https://doi.org/10.1016/j.biombioe.2012.05.003

  • Wu, S., Hu, C., Jin, G., Zhao, X., & Zhao, Z. K. (2010). Phosphate-limitation mediated lipid production by Rhodosporidium toruloides. Bioresource Technology, 101(15), 6124–6129. https://doi.org/10.1016/j.biortech.2010.02.111

  • Yamazaki, A., Kanti, A., & Kawasaki, H. (2017). Three novel lipomycetaceous yeasts, Lipomyces maratuensis sp. nov., Lipomyces tropicalis sp. nov., and Lipomyces kalimantanensis f.a., sp. nov. isolated from soil from the Maratua and Kalimantan Islands, Indonesia. Mycoscience, 58(6), 413–423. https://doi.org/10.1016/j.myc.2017.06.002

  • Yoo, J.-Y., Lee, H.-C., Shin, D.-H., & Min, B.-Y. (1982). Production of fungal lipids effects of vitamins metabolic intermediates and mineral salts on the growth and lipid accumulation of Mucor plumbeus. Korean Journal of Food Science and Technology, 14, 151–155.

  • Zhang, L., Lee, J. T. E., Ok, Y. S., Dai, Y., & Tong, Y. W. (2022). Enhancing microbial lipids yield for biodiesel production by oleaginous yeast Lipomyces starkeyi fermentation: A review. Bioresource Technology, 344(Part B), 126294. https://doi.org/10.1016/j.biortech.2021.126294

  • Zhang, X., Chen, J., Yan, S., Tyagi, R. D., Surampalli, R. Y., & Li, J. (2017). Lipid production for biodiesel from sludge and crude glycerol. Water Environment Research, 89(5), 424–439. https://doi.org/10.2175/106143017x14839994523424

  • Zhao, L., Li, B., Xiong, D., Zhang, H., Tang, X., Zhang, H., Song, Y., & Yang, S. (2016). Cocoa-butter-equivalent production from Yarrowia lipolytica by optimization of fermentation technology. American Journal of Biochemistry and Biotechnology, 12(4), 196–205. https://doi.org/10.3844/ajbbsp.2016.196.205

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JTAS-2953-2023

Download Full Article PDF

Share this article

Related Articles