e-ISSN 2231-8542
ISSN 1511-3701
Nur Syahirah Abdul Rashid, Mohamadu Boyie Jalloh, Elisa Azura Azman, Azwan Awang, Osumanu Haruna Ahmed and Nor Elliza Tajidin
Pertanika Journal of Tropical Agricultural Science, Pre-Press
DOI: https://doi.org/10.47836/pjtas.47.4.14
Keywords: Azolla microphylla, clay soil, soil amendment, soil incubation, soil nutrients
Published: 2024-11-15
The rise in chemical fertilizer use in Malaysia raises concerns about soil degradation and potential long-term yield reductions, highlighting the importance of using organic matter for soil restoration. Azolla has been extensively studied as an alternative soil amendment due to its high nitrogen and nutrient content, as well as its rapid growth. However, the effects of fresh and composted Azolla amendments on soil chemical properties are not yet fully understood. A soil incubation study was thus conducted to determine the effects of fresh and composted Azolla on soil chemical properties over a 3-month incubation period. The soil treatments consisted of non-amended soil (control); fresh Azolla at 3, 6, and 9% w/w; and composted Azolla at 1, 2, and 3% w/w, with soil water holding capacity maintained at 55% throughout the incubation period. The collected soil samples were analyzed for soil pH and electrical conductivity (EC), total carbon (C) and nitrogen (N), available phosphorus, exchangeable bases—potassium (K), calcium, and magnesium, using inductively coupled plasma optical emission spectrometry, and cation exchange capacity (CEC). All data were subjected to variance analysis for statistical analysis. The study revealed significant effects of interaction between soil treatments and incubation periods for all soil parameters. At the end of the incubation period, the soil treated with 3% composted Azolla exhibited higher soil EC, total C and N, exchangeable K, and CEC compared to other soil treatments. The 3% fresh Azolla treatments were also observed to improve the soil’s exchangeable calcium by the end of the incubation period. In conclusion, 3% composted Azolla is best to help restore soil nutrient levels for crop uptake
Adeleke, R., Nwangburuka, C., & Oboirien, B. (2017). Origins, roles and fate of organic acids in soils: A review. South African Journal of Botany, 108, 393–406. https://doi.org/10.1016/j.sajb.2016.09.002
AOAC International. (2002). Determination of lead, cadmium, copper, iron, and zinc in foods: Atomic absorption spectrophotometry after dry ashing. AOAC International.
Baldock, J. A., & Skjemstad, J. O. (2000). Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Organic Geochemistry, 31(7–8), 697–710. https://doi.org/10.1016/S0146-6380(00)00049-8
Barus, W. A., Khair, H., & Irawan, M. F. (2018). Growth response and production of broccoli (Brassica oleracea) with application of Azolla composting at several plant spacing. Indonesian Journal of Agricultural Research, 1(2), 179–186. https://doi.org/10.32734/injar.v1i2.177
Benny, H., Sabrina, T. R. A., & Ali, J. (2020). Biochar and Azolla application on fertility of lead contaminated soil. Russian Journal of Agricultural and Socio-Economic Sciences, 9(105), 134–142. https://doi.org/10.18551/rjoas.2020-09.15
Bernai, M. P., Paredes, C., Sánchez-Monedero, M. A., & Cegarra, J. (1998). Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresource Technology, 63(1), 91–99. https://doi.org/10.1016/S0960-8524(97)00084-9
Bharali, A., Baruah, K. K., Bhattacharya, S. S., & Kim, K. H. (2021). The use of Azolla caroliniana compost as organic input to irrigated and rainfed rice ecosystems: Comparison of its effects in relation to CH4 emission pattern, soil carbon storage, and grain C interactions. Journal of Cleaner Production, 313, 127931. https://doi.org/10.1016/j.jclepro.2021.127931
Bhogal, A., Nicholson, F. A., Rollett, A., Taylor, M., Litterick, A., Whittingham, M. J., & Williams, J. R. (2018). Improvements in the quality of agricultural soils following organic material additions depend on both the quantity and quality of the materials applied. Frontiers in Sustainable Food Systems, 2, 9. https://doi.org/10.3389/fsufs.2018.00009
Bhuvaneshwari, K., & Singh, P. K. (2015). Response of nitrogen-fixing water fern Azolla biofertilization to rice crop. 3 Biotech, 5, 523–529. https://doi.org/10.1007/s13205-014-0251-8
Bolan, N. S., Kunhikrishnan, A., Choppala, G. K., Thangarajan, R., & Chung, J. W. (2012). Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility. Science of the Total Environment, 424, 264–270. https://doi.org/10.1016/j.scitotenv.2012.02.061
Bray, R. H., & Kurtz, L. T. (1945). Determination of total, organic and available forms of phosphorus in soils. Soil Science, 59(1), 39–46. https://doi.org/10.1097/00010694-194501000-00006
Bronick, C. J., & Lal, R. (2005). Soil structure and management: A review. Geoderma, 124(1–2), 3–22. https://doi.org/10.1016/j.geoderma.2004.03.005
Clements, D. P., & Bihn, E. A. (2019). The impact of food safety training on the adoption of good agricultural practices on farms. In D. Biswas & S. A. Micallef (Eds.), Safety and practice for organic food (pp. 321–344). Academic Press. https://doi.org/10.1016/B978-0-12-812060-6.00016-7
Djojosuwito, S. (2000). Azolla: Pertanian organik dan multiguna [Azolla: Organic and multipurpose agriculture]. Penerbit Kanisius.
do Carmo, D. L., de Lima, L. B., & Silva, C. A. (2016). Soil fertility and electrical conductivity affected by organic waste rates and nutrient inputs. Revista Brasileira de Ciência Do Solo, 40, e0150152. https://doi.org/10.1590/18069657rbcs20150152
El-mrini, S., Aboutayeb, R., & Zouhri, A. (2022). Effect of initial C/N ratio and turning frequency on quality of final compost of turkey manure and Olive pomace. Journal of Engineering and Applied Science, 69, 37. https://doi.org/10.1186/s44147-022-00092-6
Emam, M. S. A., Hawash, A. M. H., & Abul-Soud, M. A. (2022). Effect of some organic amendments on lettuce production under urban conditions. Middle East Journal of Agriculture Research, 11(1), 134–145. https://doi.org/10.36632/mejar/2022.11.1.12
Ge, N., Wei, X., Wang, X., Liu, X., Shao, M., Jia, X., Li, X., & Zhang, Q. (2019). Soil texture determines the distribution of aggregate-associated carbon, nitrogen and phosphorous under two contrasting land use types in the Loess plateau. CATENA, 172, 148–157. https://doi.org/10.1016/j.catena.2018.08.021
Hong, S., Gan, P., & Chen, A. (2019). Environmental controls on soil pH in planted forest and its response to nitrogen deposition. Environmental Research, 172, 159–165. https://doi.org/10.1016/j.envres.2019.02.020
Iacomino, G., Sarker, T. C., Ippolito, F., Bonanomi, G., Vinale, F., Staropoli, A., & Idbella, M. (2022). Biochar and compost application either alone or in combination affects vegetable yield in a volcanic mediterranean soil. Agronomy, 12(9), 1996. https://doi.org/10.3390/agronomy12091996
Ifansyah, H. (2013). Soil pH and solubility of aluminum, iron, and phosphorus in ultisols: The roles of humic acid. Journal of Tropical Soil, 18(3), 203–208.
Johan, P. D., Ahmed, O. H., Hasbullah, N. A., Omar, L., Paramisparam, P., Hamidi, N. H., Jalloh, M. B., & Musah, A. A. (2022). Phosphorus sorption following the application of charcoal and sago (Metroxylon sagu) bark ash to acid soils. Agronomy, 12(12), 3020. https://doi.org/10.3390/agronomy12123020
Jumadi, O., Hiola, S. F., Hala, Y., Norton, J., & Inubushi, K. (2014). Influence of Azolla (Azolla microphylla Kaulf.) compost on biogenic gas production, inorganic nitrogen and growth of upland kangkong (Ipomoea aquatica Forsk.) in a silt loam soil. Soil Science and Plant Nutrition, 60(5), 722–730. https://doi.org/10.1080/00380768.2014.942879
Kalamdhad, A. S., & Kazmi, A. A. (2009). Rotary drum composting of different organic waste mixtures. Waste Management and Research: The Journal for a Sustainable Circular Economy, 27(2), 129–137. https://doi.org/10.1177/0734242X08091865
Karam, D. S., Nagabovanalli, P., Rajoo, K. S., Ishak, C. F., Abdu, A., Rosli, Z., Muharam, F. M., & Zulperi, D. (2021). An overview on the preparation of rice husk biochar, factors affecting its properties, and its agriculture application. Journal of the Saudi Society of Agricultural Sciences, 21(3), 149-159. https://doi.org/10.1016/j.jssas.2021.07.005
Khalib, S. N. B., Zakarya, I. A., & Izhar, T. N. T. (2020). The effect of low initial C:N ratio during composting of rice straw ash with food waste in evaluating the compost quality. In IOP Conference Series: Earth and Environmental Science (Vol. 476, No. 1, p. 012144). IOP Publishing. https://doi.org/10.1088/1755-1315/476/1/012144
Laruna, M. A., Azman, E. A., & Ismail, R. (2020). Effect of rhinoceros beetle (Oryctes rhinoceros) larvae compost and vermicompost on selected soil chemical properties. World Research Journal of Agricultural Sciences, 7(2), 201–208.
Lestari, S. U., Mutryarny, E., & Susi, N. (2019). Azolla mycrophylla fertilizer for sustainable agriculture: Compost and liquid fertilizer applications. International Journal of Scientific and Technology Research, 8(7), 542–547.
Marzouk, S. H., Tindwa, H. J., Amuri, N. A., & Semoka, J. M. (2023). An overview of underutilized benefits derived from Azolla as a promising biofertilizer in lowland rice production. Heliyon, 9(1), e13040. https://doi.org/10.1016/j.heliyon.2023.e13040
Miyazawa, M., Pavan, M. A., Ziglio, C. O., & Franchini, J. C. (2001). Reduction of exchangeable calcium and magnesium in soil with increasing pH. Brazilian Archives of Biology and Technology, 44(2), 149–153. https://doi.org/10.1590/S1516-89132001000200007
Muktamar, Z., Lifia., & Adiprasetyo, T. (2020). Phosphorus availability as affected by the application of organic amendments in Ultisols. SAINS TANAH - Journal of Soil Science and Agroclimatology, 17(1), 16–22. https://doi.org/10.20961/stjssa.v17i1.41284
Novair, S. B., Hosseini, H. M., Etesami, H., & Razavipour, T. (2020). Rice straw and composted Azolla alter carbon and nitrogen mineralization and microbial activity of a paddy soil under drying–rewetting cycles. Applied Soil Ecology, 154, 103638. https://doi.org/10.1016/j.apsoil.2020.103638
Oades, J. M. (1988). The retention of organic matter in soils. Biogeochemistry, 5, 35–70. https://doi.org/10.1007/BF02180317
Pal, S., & Marschner, P. (2016). Influence of clay concentration, residue C/N and particle size on microbial activity and nutrient availability in clay-amended sandy soil. Journal of Soil Science and Plant Nutrition, 16(2), 350–361. https://doi.org/10.4067/S0718-95162016005000033
Pereira, A. L. (2018). The unique symbiotic system between a fern and a Cyanobacterium, Azolla-Anabaena azollae: Their potential as biofertilizer, feed, and remediation. In E. C. Rigobelo (Ed.), Symbiosis. IntechOpen. https://doi.org/10.5772/intechopen.70466
Pinero-Rodríguez, M. J., Fernández-Zamudio, R., Arribas, R., Gomez-Mestre, I., & Díaz-Paniagua, C. (2021). The invasive aquatic fern Azolla filiculoides negatively impacts water quality, aquatic vegetation and amphibian larvae in Mediterranean environments. Biological Invasions, 23, 755–769. https://doi.org/10.1007/s10530-020-02402-6
Rani, M., Jha, A. K., Bihari, B., Kumar, A., & Kumar, A. (2020). An incubation experiment to study potassium fractions using Azolla, vermicompost and muriate of potash as potassium sources in inceptisol of Bihar. International Journal of Current Microbiology and Applied Sciences, 9(5), 2573–2582. https://doi.org/10.20546/ijcmas.2020.905.294
Sanjay-Swami, & Singh, S. (2019a). Effect of nitrogen application through urea and Azolla on yield, nutrient uptake of rice and soil acidity indices in acidic soil of Meghalaya. Journal of Environmental Biology, 41, 139–146. https://doi.org/10.22438/jeb/41/1/MRN-1133
Sanjay-Swami, & Singh, S. (2019b). Harnessing production potential of acidic soils: Impacts of Azolla (Azolla pinnata) bio-fertilizer and urea on rice (Oryza sativa L.) performance, temporal soil P availability and acidity indices. South Asian Research Journal of Agriculture and Fisheries, 1(1), 1–7. https://doi.org/10.36346/sarjaf.2019.v01i01.001
Sarkar, B., Singh, M., Mandal, S., Churchman, G. J., & Bolan, N. S. (2018). Clay minerals — Organic matter interactions in relation to carbon stabilization in soils. In C. Garcia, P. Nannipieri, & T. Hernandez (Eds.), The future of soil carbon: Its conservation and formation (pp. 71–86). Academic Press. https://doi.org/10.1016/B978-0-12-811687-6.00003-1
Sarkar, D., & Haldar, A. (2010). Physical and chemical methods in soil analysis: Fundamental concepts of analytical chemistry and instrumental technique. New Age International Pvt. Ltd.
Seleiman, M. F., Elshayb, O. M., Nada, A. M., El-leithy, S. A., Baz, L., Alhammad, B. A., & Mahdi, A. H. A. (2022). Azolla compost as an approach for enhancing growth, productivity and nutrient uptake of Oryza sativa L. Agronomy, 12(2), 416. https://doi.org/10.3390/agronomy12020416
Setiawati, M. R., Damayani, M., Herdiyantoro, D., Suryatmana, P., Anggraini, D., & Khumairah, F. H. (2018). The application dosage of Azolla pinnata in fresh and powder form as organic fertilizer on soil chemical properties, growth and yield of rice plant. In AIP Conference Proceedings (Vol. 1927, No. 1, p. 030017). AIP Publishing. https://doi.org/10.1063/1.5021210
Setiawati, M. R., Suryatmana, P., Budiasih., Sondari, N., Nurlina, L., Kurnani, B. A., & Harlia, E. (2018). Utilization Azolla pinnata as substitution of manure to improve organic rice yield and paddy soil health. In IOP Conference Series: Earth and Environmental Science (Vol. 215, No. 1, p. 012006). IOP Publishing. https://doi.org/10.1088/1755-1315/215/1/012006
Shafiee, M. R., Aziz, N. A. A., Ahmad, B., Yusof, M. N. M., & Vun, C. T. (2021). Kawalan rumpai pada tanaman padi organik [Weed control in organic rice]. Buletin Teknologi MARDI, 25, 127-135.
Singh, B. (2018). Are nitrogen fertilizers deleterious to soil health? Agronomy, 8(4), 48. https://doi.org/10.3390/agronomy8040048
Singh, M., Sarkar, B., Sarkar, S., Churchman, J., Bolan, N., Mandal, S., Menon, M., Purakayastha, T. J., & Beerling, D. J. (2018). Stabilization of soil organic carbon as influenced by clay mineralogy. Advances in Agronomy, 148, 33–84. https://doi.org/10.1016/bs.agron.2017.11.001
Singh, V. K., Malhi, G. S., Kaur, M., Singh, G., & Jatav, H. S. (2022). Use of organic soil amendments for improving soil ecosystem health and crop productivity. In H. S. Jatav & V. D. Rajput (Eds.), Ecosystem services: Types, management and benefits (pp. 259–277). Nova Science Publishers. https://doi.org/10.52305/PFZA6988
Soil Survey Staff. (2014). Kellogg soil survey laboratory methods manual: Soil survey investigations report no. 42, version 5.0. U.S. Department of Agriculture, Natural Resources Conservation Service.
Sung, C. T. B., Ishak, C. F., Abdullah, R., Othman, R., Panhwar, Q. A., & Aziz, M. M. A. (2017). Soil properties (physical, chemical, biological, mechanical). In M. A. Ashraf, R. Othman, & C. F. Ishak (Eds.), Soils of Malaysia (1st ed., pp. 103-154). CRC Press. https://doi.org/10.1201/b21934
Thapa, P., & Poudel, K. (2021). Azolla: Potential biofertilizer for increasing rice productivity, and government policy for implementation. Journal of Wastes and Biomass Management, 3(2), 62–68. https://doi.org/10.26480/jwbm.02.2021.62.68
Trupiano, D., Cocozza, C., Baronti, S., Amendola, C., Vaccari, F. P., Lustrato, G., Di Lonardo, S., Fantasma, F., Tognetti, R., & Scippa, G. S. (2017). The effects of biochar and its combination with compost on lettuce (Lactuca sativa L.) growth, soil properties, and soil microbial activity and abundance. International Journal of Agronomy, 2017, 3158207. https://doi.org/10.1155/2017/3158207
van Hove, C., & Lejeune, A. (1996). Does Azolla have any future in agriculture? In M. Rahman, A. K. Podder, C. van Hove, Z. N. T. Begum, T. Heulin, & A. Hartmann (Eds)., Biological nitrogen fixation associated with rice production (pp. 83–94). Springer. https://doi.org/10.1007/978-94-015-8670-2_10
Ventura, W., Watanabe, I., & Mascarifia, G. B. (1992). Mineralization of Azolla N and its availability to wetland rice. Soil Science and Plant Nutrition, 38(3), 505–516. https://doi.org/10.1080/00380768.1992.10415082
White, R. E. (2005). Principles and practice of soil science: The soil as a natural resource (4th ed.). John Wiley & Sons.
Widiastuti, D. P., Davis, J. G., & Gafur, S. (2018). Azolla fertilizer as an alternative n source for red spinach production on alluvial and peat soils in west Kalimantan, Indonesia. https://www.researchgate.net/publication/328899361_Azolla_fertilizer_as_an_alternative_N_source_for_red_spinach_production_on_alluvial_and_peat_soils_in_West_Kalimantan_Indonesia
Yadav, R. K., Abraham, G., Singh, Y. V, & Singh, P. K. (2014). Advancements in the utilization of Azolla-Anabaena system in relation to sustainable agricultural practices. Proceedings of the Indian National Science Academy, 80(2), 301–316. https://doi.org/10.16943/ptinsa/2014/v80i2/55108
Zhou, W., Han, G., Liu, M., & Li, X. (2019). Effects of soil pH and texture on soil carbon and nitrogen in soil profiles under different land uses in Mun River Basin, Northeast Thailand. PeerJ, 7, e7880. https://doi.org/10.7717/peerj.7880
ISSN 0128-7702
e-ISSN 2231-8534
Share this article
Recent Articles