e-ISSN 2231-8542
ISSN 1511-3701
Nur Amiratul Sofea, Nur Amalina Samat, Muhammad Fadhil Syukri, Wan Nadiah Rasdi, Puvaneswari Puvanasundram and Murni Karim
Pertanika Journal of Tropical Agricultural Science, Volume 47, Issue 3, August 2024
DOI: https://doi.org/10.47836/pjtas.47.3.28
Keywords: Bacillus pocheonensis, enrichment, environmental parameters, growth rate, Lysinibacillus fusiformis, Moina micrura
Published on: 27 August 2024
Salinity, light intensity, and oxygen concentration are key environmental factors that significantly affect biological processes and the composition and dispersion of Moina biomass. Evaluating the effectiveness of probiotic enrichment in improving population density, growth rate, and neonate production can provide valuable details on the effectiveness of probiotics in enhancing the resilience and viability of Moina micrura under suboptimal circumstances. The purpose of this research project is to assess the efficacy of two probiotics, Bacillus pocheonensis strain S2 and Lysinibacillus fusiformis strain A1, in improving the population density, growth rate, and reproductive output in M. micrura across various environmental conditions. Moina micrura were treated with each probiotic at a volume of 5 x 105 CFU/ml under different levels of salinity (0, 2, 4, and 6 ppt), light intensity (800, 1,000, 1,500, and 2,000 lux), and oxygen concentration (80, 70, 60, and 50%). The results indicated that M. micrura treated with L. fusiformis A1 at 0 ppt attained the highest population density (6 ± 0.90 Ind./ml), growth rate (0.355 ± 0.030 µ), and number of offspring production (5 ± 0.75 Ind./ml). The highest point of population density (5 ± 0.07 Ind./ml), growth rate (0.381 ± 0.002 µ) and number of offspring (7 ± 0.41 Ind./ml) of M. micrura were obtained while treated with B. pocheonensis S2 at light intensity of 1,500 lux. Similarly, the highest population density (5 ± 0.60 Ind./ml), growth rate (0.365 ± 0.190 µ), and offspring production (2 ± 0.25 Ind./ml) of M. micrura were observed during enrichment with B. pocheonensis S2 at 70% oxygen concentration. Therefore, these results suggested that the optimum conditions for enriching M. micrura with B. pocheonensis S2 are salinity of 0 ppt, 70% oxygen concentration, and a light intensity level of 1,500 lux.
Alonso, M., Neretina, A. N., Sanoamuang, L.-O., Saengphan, N., & Kotov, A. A. (2019). A new species of Moina Baird, 1850 (Cladocera: Moinidae) from Thailand. Zootaxa, 4554(1), 199-218. https://doi.org/10.11646/zootaxa.4554.1.6
Babitha Rani, A. M., Reddy, A. K., & Sahu, N. P. (2006). Growth enhancement and survival of Macrobrachium rosenbergii larvae fed Artemia nauplii enriched with cod liver oil and/or Lactobacillus. Israeli Journal of Aquaculture - Bamidgeh, 58(3), 183–190. https://doi.org/10.46989/001c.20441
Bekker, E. I., Karabanov, D. P., Galimov, Y. R., & Kotov, A. A. (2016). DNA barcoding reveals high cryptic the North Eurasian Moina species (Crustacea: Cladocera). PLOS One, 11(8), e0161737. https://doi.org/10.1371/journal.pone.0161737
Bentzon-Tilia, M., Sonnenschein, E. C., & Gram, L. (2016). Monitoring and managing microbes in aquaculture - Towards a sustainable industry. Microbial Biotechnology, 9(5), 576–584. https://doi.org/10.1111/1751-7915.12392
Boolootian, R. A. (1963). Response of the testes of purple sea urchins to variations in temperature and light. Nature, 197, 403. https://doi.org/10.1038/197403a0
Buikema Jr., A. J. (1973). Some effects of light on the growth, molting, reproduction, and survival of the cladoceran, Daphnia pulex. Hydrobiologia, 41, 391–418. https://doi.org/10.1007/BF00016626
Cairns Jr., J., Heath, A. G., & Parker, B. C. (1975). The effects of temperature upon the toxicity of chemicals to aquatic organisms. Hydrobiologia, 47, 135–171. https://doi.org/10.1007/BF00036747
Carter, C. G. (2015). Feeding in hatcheries. In D. A. Davis (Ed.), Feed and feeding practices in aquaculture (pp. 317-348). Woodhead Publishing. https://doi.org/10.1016/b978-0-08-100506-4.00013-1
Coronado, A. S., & Camacho, M. V. C. (2014). Influence of yeast, chicken manure and daily feeding of Chlorella ellipsoidea in the population growth of Moina micrura. PUP Journal of Science and Technology, 7, 18–27.
Damayanti, K. Y., Mubarak, A. S., & Sari, L. A. (2020). The effect of giving fermented rice bran suspension on fecundity and production of Moina macrocopa offspring per parent. In IOP conference Series: Earth and Environmental Science (Vol. 441, No. 1, p. 012156). IOP Publishing. https://doi.org/10.1088/1755-1315/441/1/012156
Defoirdt, T., Sorgeloos, P., & Bossier, P (2011). Alternatives to antibiotics for the control of bacterial disease in aquaculture. Current Opinion in Microbiology, 14(3), 251–258. https://doi.org/10.1016/j.mib.2011.03.004
Douillet, P. A. (2000). Bacterial additives that consistently enhance rotifer growth under synxenic culture conditions: 1. Evaluation of commercial products and pure isolates. Aquaculture, 182(3-4), 249–260. https://doi.org/10.1016/S0044-8486(99)00271-9
El-Gamal, M. M., Mona, M. H., Abdel, R. F., Salim, H. K., & Nour Eldeen, M. F. (2014). Salinity and temperature effect on survival and life history of freshwater cladoceran Daphnia longispina inhabiting Egyptian water. Sci-Afric Journal Scientific Issues, Research and Essays, 2(8), 365-374.
Gatesupe, F.-J. (2008). Updating the importance of lactic acid bacteria in fish farming: Natural occurrence and probiotic treatments. Journal of Molecular Microbiology and Biotechnology, 14(1-3), 107–114. https://doi.org/10.1159%2F000106089
Gogoi, B., Safi, V., & Das, D. N. (2016). The cladoceran as live feed in fish culture: A brief review. Research Journal of Animal, Veterinary and Fishery Sciences, 4(3), 7–12.
Gomez-Gil, B., Roque, A., & Turnbull, J. F. (2000). The use and selection of probiotic bacteria for use in the culture of larval aquatic organisms. Aquaculture, 191(1-3), 259–270. https://doi.org/10.1016/S0044-8486(00)00431-2
Green, J. (1956). Growth, size, and reproduction in Daphnia (Crustacea: Cladocera). Proceedings of the Zoological Society of London, 126(2), 173-204. https://doi.org/10.1111/j.1096-3642.1956.tb00432.x
Hai, N. V. (2015). The use of probiotics in aquaculture. Journal of Applied Microbiology, 119(4), 917–935. https://doi.org/10.1111/jam.12886
Harris, R., Wiebe, P., Lenz, J., Skjoldal, H. R., & Huntley, M. (Eds.). (2000). ICES zooplankton methodology manual. Academic Press. https://doi.org/10.1016/b978-0-12-327645-2.x5000-2
He, Z. H., Qin, J. G., Wang, Y., Jiang, H., & Wen, Z. (2001). Biology of Moina mongolica (Moinidae, Cladocera) and perspective as live food for marine fish larvae: Review. Hydrobiologia, 457, 25–37. https://doi.org/10.1023/A:1012277328391
Hoseinifar, S. H., Sun, Y.-Z., Wang, A., & Zhou, Z. (2018). Probiotics as means of diseases control in aquaculture, a review of current knowledge and future perspectives. Frontiers in Microbiology, 9, 2429. https://doi.org/10.3389/fmicb.2018.02429
Jiang, Y., Wang, Y., Zhang, Z., Liao, M., Li, B., Rong, X., & Chen, G. (2019). Responses of microbial community structure in turbot (Scophthalmus maximus) larval intestine to the regulation of probiotic introduced through live feed. PLOS One, 14(5), e0216590. https://doi.org/10.1371/journal.pone.0216590
Kagali, R. N., Ogello, E. O., Kiama, C. W., Kim, H.-J., Wullur, S., Sakakura, Y., & Hagiwara, A. (2022). Culturing live foods for fish larviculture using non-microalgal diet: The role of waste-generated bacteria and selected commercial probiotics — A review. Aquaculture, Fish and Fisheries, 2(2), 71-81. https://doi.org/10.1002/aff2.33
Kamrunnahar, K., Md, A., Jeong, U.-C., & Kang, S.-J. (2019). Mass culture of Moina macrocopa using organic waste and its feeding effects on the performance of Pagrus major larvae. The Egyptian Journal of Aquatic Research, 45(1), 75-80. https://doi.org/10.1016/j.ejar.2019.02.001
Kang, C.‐K., Park, H. Y., Kim, M.‐C., & Lee, W. J. (2006). Use of marine yeasts as an available diet for mass cultures of Moina macrocopa. Aquaculture Research, 37(12),1227–1237. https://doi.org/10.1111/j.1365-2109.2006.01553.x
Kotani, T., Imari, H., Miyashima, A., & Fushimi, H. (2016). Effects of feeding with frozen freshwater cladoceran Moina macrocopa on the performance of red sea bream Pagrus major larviculture. Aquaculture International, 24, 183-197. https://doi.org/10.1007/s10499-015-9918-3
Le, D. V. B., Nguyen, P. N., Dierckens, K., Nguyen, D. V., De Schryver, P., Hagiwara, A., & Bossier, P. (2017). Growth performance of the very small rotifer Proales similis is more dependent on proliferating bacterial community than the bigger rotifer Brachionus rotundiformis. Aquaculture, 476, 185–193. https://doi.org/10.1016/j.aquaculture.2017.03.046
Lobo, C., Martín, M. V., Moreno-Ventas, X., Tapia-Paniagua, S. T., Rodríguez, C., Moriñigo, M. A., & García de la Banda, I. (2018). Shewanella putrefaciens Pdp11 probiotic supplementation as enhancer of Artemia n-3 HUFA contents and growth performance in Senegalese sole larviculture. Aquaculture Nutrition, 24(1), 548–561. https://doi.org/10.1111/anu.12587
Loh, J. Y., How, C. W., Hii, Y. S., Khoo, G., & Ong, H. K. A. (2009). Fish faeces as a potential food source for cultivating the water flea, Moina macrocopa. Journal of Science and Technology in the Tropics, 5, 5-10.
Miliou, H. (1992). Effects of light (photoperiod, spectral composition) on the population dynamics of Tisbe holothuriae Humes (Copepods, Harpacticoida). Hydrobiologia, 232, 201–209. https://doi.org/10.1007/BF00013705
Munirasu, S., Uthayakumar, V., Arunkumar, P., & Ramasubramanian, V. (2016). The effect of different feeds such as Chlorella vulgaris, Azolla pinnata, and yeast on the population growth of Daphnia magna commonly found in freshwater systems. International Journal of Fisheries and Aquatic Studies, 4(6), 5–10.
Nakamoto, M. I., Kimura, H., Inanda, Y., & Hagiwara, A. (2008). Two cladoceran species Moina macrocopa and Diaphanosoma celebensis, as live feed for larval prawn, Penaeus japonicas. Aquaculture Science, 56(1), 31–36. https://doi.org/10.11233/aquaculturesci.56.31
Nandini, S. & Sarma, S. S. S. (2000). Lifetable demography of four cladoceran species in relation to algal food (Chlorella vulgaris) density. Hydrobiologia, 435, 117-126. https://doi.org/10.1023/A:1004021124098
Natrah, F. M. I., Yusoff, F. M., Shariff, M., Abas, F., & Mariana, N. S. (2007). Screening of Malaysian indigenous microalgae for antioxidant properties and nutritional value. Journal of Applied Phycology, 19, 711-718. https://doi.org/10.1007/s10811-007-9192-5
Neelakantan, B., Naik, U. G., Prasad, P. N., & Kusuma, M. S. (1988). Hydrobiology of Kali estuary and adjoining brackish water systems, Karwar. Environment and Ecology, 6(1), 139-147.
Nur Natasya Ain, R. (2018). Evaluation of potential probiotic bacteria for microalgae propagation and Artemia franciscana (Kellog, 1906) bioencapsulation [Master’s thesis, Universiti Putra Malaysia]. Universiti Putra Malaysia Institutional Repository. http://psasir.upm.edu.my/id/eprint/78491/
Okunsebor, S. A., & Ayuma, V. (2010). Growth, survival rate and condition factor of Heteroclarias hatchlings fed cultured Moina micrura, shell free Artemia and combination of both as starter feed. Fisheries Society of Nigeria. In 25th Annual Conference of the Fisheries Society of Nigeria (pp. 519-525). Fisheries Society of Nigeria.
Olafsen, J. A. (2002). Interactions between fish larvae and bacteria in marine aquaculture. Aquaculture, 200(1-2), 223–247. https://doi.org/10.1016/S0044-8486(01)00702-5
Peck, M. A., Ewest, B., Holste, L., Kanstinger, P., & Martin, M. (2008). Impacts of light regime on egg harvests and 48-h egg hatching success of Acartia tonsa (Copepoda: Calanoida) within intensive culture. Aquaculture, 275(1–4), 102–107. https://doi.org/10.1016/j.aquaculture.2007.12.008
Peña-Aguado, F., Nandini, S., & Sarma, S. S. S. (2005), Differences in population growth of rotifers and cladocerans raised on algal diets supplemented with yeast. Limnologica, 35(4), 298-303. https://doi.org/10.1016/j.limno.2005.08.002
Pintado, J., Pérez-Lorenzo, M., Luna-González, A., Sotelo, C. G., Prol, M. J., & Planas, M. (2010). Monitoring of the bioencapsulation of a probiotics Phaeobacter strain in the rotifers Brachionus plizatilis using denaturing gradient gel electrophoresis. Aquaculture, 302(3-4), 182–194. https://doi.org/10.1016/j.aquaculture.2010.02.014
Planas, M., Vázquez, J. A., Marqués, J., Pérez-Lomba, R., González, M. P., & Murado, M. (2004). Enhancement of rotifer (Brachionus plicatilis) growth by using terrestrial lactic acid bacteria. Aquaculture, 240(1-4), 313–329. https://doi.org/10.1016/j.aquaculture.2004.07.016
Pratiwy, F. M., Grandiosa, R., & Arifah, F. N. (2021). The enrichment of live feeds: An inquiry for feeding at early stages of fish. International Journal of Fisheries and Aquatic Studies, 9(1), 131–134. https://doi.org/10.22271/fish.2021.v9.i1b.2394
Ramírez-Merlano, J. A., Mira-López, T., & Cruz-Casallas, P. E. (2013). Efecto de la intensidad lumínica sobre la eficiencia reproductiva del cladócero Moina sp. bajo condiciones de laboratorio [Effect of light intensity on reproductive efficiency of cladoceran Moina sp. under laboratory conditions]. Orinoquia, 17(2), 177-182. https://doi.org/10.22579/20112629.4
Rasdi, N. W., Arshad, A., Ikhwanuddin, M., Hagiwara, A., Yusoff, F. M., & Azani, N. (2020). A review on the improvement of cladocera (Moina) nutrition as live food for aquaculture: Using valuable plankton fisheries resources. Journal of Environmental Biology, 41, 1239–1248. https://doi.org/10.22438/jeb/41/5(SI)/MS_16
Rasdi, N. W., Suhaimi, H., Hagiwara, A., Ikhwanuddin, M., Ghaffar, M. A., Yuslan, A., & Najuwa, S. (2019). Effect of different salinities gradient on fatty acid composition, growth, survival, and reproductive performance of Moina macrocopa (Straus 1820) (Crustacea, Cladocera). Preprints, 2019, 2019060205. http://doi.org/10.20944/preprints201906.0205.v1
Rizo, E. Z. C., Gu, Y., Papa, R. D. S., Dumont, H. J., & Han, B.-P. (2017). Identifying functional groups and ecological roles of tropical and substropical freshwater Cladocera in Asia. Hydrobiologia, 799, 83-99. https://doi.org/10.1007/s10750-017-3199-y
Rose, R. M., Warne, M. S. J., & Lim, R. P. (2002). Some life history responses of the cladoceran Ceriodaphnia cf. dubia to variations in population density at two different food concentrations. Hydrobiologia, 481, 157–164. https://doi.org/10.1023/A:1021225423730
Rosland, N.-A., Ikhsan, N., Min, C. C., Yusoff, F. M., & Karim, M. (2021). Influence of symbiotic probiont strains on the growth of Amphora and Chlorella and its potential protections against Vibrio spp. in Artemia. Current Microbiology, 78, 3901–3912. https://doi.org/10.1007/s00284-021-02642-2
Rottmann, R. W., Graves, J. S., Watson, C., & Yanong, R. P. E. (2003). Culture techniques of Moina: The ideal Daphnia for feeding freshwater fish fry: CIR1054/FA024, 5/1999. EDIS, 2003, 16. https://doi.org/10.32473/edis-fa024-1992
Saini, V. P., Gupta, M. C., Sharma, L. L., & Ojha, M. L. (2013). Efficacy of split dose application in the mass culture of cladocerans using domestic sewage. Ecology, Environment and Conservation, 19(3), 265-269.
Samat, N. A., Yusoff, F. M., Chong, C. M., & Karim, M. (2020). Enrichment of freshwater zooplankton Moina micrura with probiotics isolated from microalgae. Journal of Environmental Biology, 41, 1215-1223. http://doi.org/10.22438/jeb/41/5(SI)/MS_13
Samat, N. A., Yusoff, F. M., Lim, K. C., Rasdi, N. W., Syukri, F., & Karim, M. (2022). Effects of temperature, pH, and photoperiod on the performance of a freshwater cladoceran Moina micrura culture enriched with Lysinibacillus fusiformis and Bacillus pocheonensis. Latin American Journal of Aquatic Research, 50(5), 681-691. https://doi.org/10.3856/vol50-issue5-fulltext-2932
Samat, N. A., Yusoff, F. M., Rasdi, N. W., & Karim, M. (2020). Enhancement of live food nutritional status with essential nutrients for improving aquatic animal health: A review. Animals, 10(12), 2457. https://doi.org/10.3390/ani10122457
Samat, N. A., Yusoff, F. M., Rasdi, N. W., & Karim, M. (2021). The efficacy of Moina micrura enriched with probiotic Bacillus pocheonensis in enhancing survival and disease resistance of red hybrid tilapia (Oreochromis spp.) larvae. Antibiotics, 10(8), 989. https://doi.org/10.3390/antibiotics10080989
Santangelo, J. M., Bozelli, R. L., de M. Rocha, A., & de A. Esteves, F. (2008). Effects of slight salinity increases on Moina micrura (Cladocera) populations: Field and laboratory observations. Marine and Freshwater Research, 59(9), 808–816. https://doi.org/10.1071/MF08026
Sarma, S. S. S., Amador López-Rómulo, J., & Nandini, S. (2003). Larval feeding behaviour of blind fish Astyanax fasciatus (Characidae), black tetra Gymnocorymbus ternetzi (Characidae), and angel fish Pterophyllum scalare (Cichlidae) fed zooplankton. Hydrobiologia, 510, 207–216. https://doi.org/10.1023/B:HYDR.0000008646.82042.7c
Sarma, S. S. S., Nandini, S., Morales-Ventura, J., Delgado-Martínez, I., & González-Valverde, L. (2006). Effects of NaCl salinity on the population dynamics of freshwater zooplankton (rotifers and cladocerans). Aquatic Ecology, 40, 349–360. https://doi.org/10.1007/s10452-006-9039-1
Serra, T., Müller, M. F., Barcelona, A., Salvadó, V., Pous, N., & Colomer, J. (2019). Optimal light conditions for Daphnia filtration. Science of the Total Environment, 686, 151–157. https://doi.org/10.1016/j.scitotenv.2019.05.482
Singh, K., Munilkumar, S., Sahu, N. P., Das, A., & Devi, G. A (2019). Feeding HUFA and vitamin C-enriched Moina micrura enhances growth and survival of Anabas testudineus (Bloch, 1792) larvae. Aquaculture, 500, 378–384. https://doi.org/10.1016/j.aquaculture.2018.09.049
Sipaúba-Tavares, L. H., & Bachion, M. A. (2002). Population growth and development of two species of Cladocera, Moina micrura and Diaphanosoma birgei, in laboratory. Brazilian Journal of Biology, 62(4A), 701–711. https://doi.org/10.1590/s1519-69842002000400018
Sun, Y.-Z., Yang, H.-L., Huang, K.-P., Ye, J.-D., & Zhang, C.-X. (2013). Application of autochthonous Bacillus bioencapsulated in copepod to grouper Epinephelus coioides larvae. Aquaculture, 392–395, 44–50. https://doi.org/10.1016/j.aquaculture.2013.01.037
Svetlichny, L., & Hubareva, E. (2002). Effect of oxygen concentration on metabolism and locomotory activity of Moina micrura (Cladocera) cultured under hypo- and normoxia. Marine Biology, 141, 145–151. https://doi.org/10.1007/s00227-002-0805-x
Taghavi, D., Farhadian, O., Soofiani, N. M., & Keivany, Y. (2013). Effects of different light/dark regimes and algal food on growth, fecundity, ephippial induction, and molting of freshwater cladoceran, Ceriodaphnia quadrangular. Aquaculture, 410–411, 190–196. https://doi.org/10.1016/j.aquaculture.2013.06.026
Toruan, R. L. (2012). Zooplankton community emerging from fresh and saline wetlands. Ecohydrology and Hydrobiology, 12(1), 53–63. https://doi.org/10.2478/v10104-012-0003-5
Vijverberg, J. (1989). Culture techniques for studies on the growth, development, and reproduction of copepods and cladocerans under laboratory and in situ conditions: A review. Freshwater Biology, 21(3), 317–373. https://doi.org/10.1111/j.1365-2427.1989.tb01369.x
Wang, Z., Yan, C., & Hyne, R. V. (2010). Effects of dietary cadmium exposure on reproduction of saltwater cladoceran Moina monogolica Daday: Implications in water quality criteria. Environmental Toxicology and Chemistry, 29(2), 365-372. https://doi.org/10.1002/etc.31
Watanabe, T., Oowa, F., Kitajima, C., & Fujita, S. (1978). Nutritional quality of brine shrimp, Artemia sauna, living feed from the viewpoint of essential as fatty acids for fish. Bulletin of the Japanese Society of Scientific Fisheries, 44, 1115-1121.
Wikfors, G. H. (2004). Live feeds in marine aquaculture. Journal of Phycology, 40(5), 999-1000. https://doi.org/10.1111/j.1529-8817.2004.40504.x
Wong, C. K. (2011). Notice of retraction: Effect of temperature and dissolved oxygen on life history and metal tolerance of the freshwater cladoceran Moina macrocopa. In 5th International Conference on Bioinformatics and Biomedical Engineering (pp. 1-3). IEEE. https://doi.org/10.1109/icbbe.2011.5781399
Wonkwon, K., Ayna, E., Shahabuddin, A. M., Araki, T., & Yoshimatsu, T. (2019). Negative effects of full spectrum light exposure along with UV radiation on survival and reproduction of Cladocera Daphnia magna (Straus, 1820). International Journal of Fisheries and Aquatic Studies, 7(4), 40–44.
Yuslan, A., Najuwa, S., Hagiwara, A., Ghaffar, M. A., Suhaimi, H., & Rasdi, N. W. (2021). Production performance of Moina macrocopa (Straus 1820) (Crustacea, Cladocera) cultured in different salinities: The effect on growth, survival, reproduction, and fatty acid composition of the neonates. Diversity, 13(3), 105. https://doi.org/10.3390/d13030105
Zhang, L., & Baer, K. N. (2000). The influence of feeding, photoperiod, and selected solvents on the reproductive strategies of the water flea, Daphnia magna. Environmental Pollution, 110(3), 425–430. https://doi.org/10.1016/S0269-7491(99)00324-3
ISSN 1511-3701
e-ISSN 2231-8542