e-ISSN 2231-8542
ISSN 1511-3701
Aimi Zabidi, Natasya-Ain Rosland, Jasmin Yaminudin and Murni Karim
Pertanika Journal of Tropical Agricultural Science, Volume 44, Issue 1, February 2021
DOI: https://doi.org/10.47836/pjtas.44.1.12
Keywords: Lysinibacillus fusiformis, L. sphaericus, microalgae, probiotics, Vibrio spp.
Published on: 24 Febuary 2021
Bacteria and microalgae are essential elements in the aquatic ecosystem, co-existing and having constant interactions with each other which help microalgae to exert its beneficial effect as probiotics in aquaculture. This research aims to isolate and identify potential probiotics from different species of microalgae and to evaluate their antimicrobial activity against pathogenic Vibrio spp. via series of in vitro assays; disc diffusion, well diffusion, and co-culture assays. A total of 18 bacterial strains were isolated from five species of microalgae; Chlorella sp., Nannochloropsis sp., Amphora sp., Chaetoceros sp., and Spirulina sp.. The isolated strains were tested in in vitro antagonistic assay against four Vibrio spp. (Vibrio harveyi, Vibrio alginolyticus, Vibrio vulnificus, and Vibrio parahaemolyticus). Seventeen strains demonstrated antimicrobial activity with the highest inhibition was observed by strain SPS11 against V. parahaemolyticus (12.6 ± 0.36 mm) in disc diffusion assay and strain NAS32 showed 13.2 ± 0.45 mm clear zone against V. vulnificus in well diffusion assay. In co-culture assay, both the SPS11 and NAS32 were able to reduce the growth of V. parahaemolyticus and V. harveyi at concentration of 106 and 108 CFU mL-1, respectively. Strains SPS11 and NAS32 were characterized as gram positive bacteria with rod shape and further identified as Lysinibacillus fusiformis (SPS11) and Lysinibacillus sphaericus (NAS32) using 16s rRNA. These two strains should be further studied in in vivo challenged experiments in fish and shellfish to explore their probiotic effects.
Abraham, T. J. (2016). Transferable chloramphenicol resistance determinant in luminous Vibrio harveyi from penaeid shrimp Penaeus monodon larvae. Journal of Fisheries, 4(3), 428-430. https://doi.org/10.17017/jfish.v4i3.2016.158
Adams, C. A. (2010). The probiotic paradox: Live and dead cells are biological response modifiers. Nutrition Research Reviews, 23(1), 37-46. https://doi.org/10.1017/s0954422410000090
Amin, S. A., Parker, M. S., & Ambrust, E. V. (2012). Interactions between diatoms and bacteria. Microbiology and Molecular Biology Reviews, 76(3), 667–684. https://doi.org/10.1128/mmbr.00007-12
Baker-Austin, C., McArthur, J. V., Tuckfield, R. C., Najarro, M., Lindell, A. H., Gooch, J., & Stepanauskas, R. (2008). Antibiotic resistance in the shellfish pathogen Vibrio parahaemolyticus isolated from the coastal water and sediment of Georgia and South Carolina, USA. Journal of Food Protection, 71(12), 2552-2558. https://doi.org/10.4315/0362-028x-71.12.2552
Bartholomew, J. W., & Mittwer, T. (1952). The Gram stain. Bacteriological Reviews, 16(1), 1. https://doi.org/10.1128/br.16.1.1-29.1952
Borowitzka, M. A. (1995). Microalgae as sources of pharmaceuticals and other biologically active compounds. Journal of Applied Phycology, 7(1), 3–15. https://doi.org/10.1007/bf00003544
Burbank, D. R., LaPatra, S. E., Fornshell, G. & Cain, K. D. (2012). Isolation of bacterial probiotic candidates from the gastrointestinal tract of rainbow trout, Oncorhynchus mykiss (Walbaum), and screening for inhibitory activity against Flavobacterium psychrophilum. Journal of Fish Diseases, 35(11), 809-816. https://doi.org/10.1111/j.1365-2761.2012.01432.x
Burbank, D. R., Shah, D. H., LaPatra, S. E., Fornshell, G., & Cain, K. D. (2011). Enhanced resistance to coldwater disease following feeding of probiotic bacterial strains to rainbow trout (Oncorhynchus mykiss). Aquaculture, 321(3-4), 185-190. https://doi.org/10.1016/j.aquaculture.2011.09.004
Burridge, L., Weis, J. S., Cabello, F., Pizarro, J., & Bostick, K. (2010). Chemical use in salmon aquaculture: A review of current practices and possible environmental effects. Aquaculture, 306(1-4), 7-23. https://doi.org/10.1016/j.aquaculture.2010.05.020
Charoonnart, P., Purton, S., & Saksmerprome, V. (2018). Applications of microalgal biotechnology for disease control in aquaculture. Biology, 7(2), 24. https://doi.org/10.3390/biology7020024
Chen, Y. R., Hwang, C. A., Huang, L., Wu, V. C., & Hsiao, H. I. (2019). Kinetic analysis and dynamic prediction of growth of Vibrio parahaemolyticus in raw white shrimp at refrigerated and abuse temperatures. Food Control, 100, 204-211. https://doi.org/10.1016/j.foodcont.2019.01.013
Desbois, A. P., Mearns-Spragg, A., & Smith, V. J. (2009). A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA). Marine Biotechnology, 11(1), 45–52. https://doi.org/10.1007/s10126-008-9118-5
Doroteo, A. M., Pedroso, F. L., Lopez, J. D. M., & Apines-Amar, M. J. S. (2018). Evaluation of potential probiotics isolated from saline tilapia in shrimp aquaculture. Aquaculture International, 26(4), 1095-1107. https://doi.org/10.1007/s10499-018-0270-2
Duff, D. A., Bruce, D. L., & Antia, N. J. (1966). The antibacterial activity of marine planktonic algae. Canadian Journal of Microbiology, 12(5), 877-884. https://doi.org/10.1139/m66-120
Ethier, S., Woisard, K., Vaughan, D., & Wen, Z. (2011). Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid. Bioresource Technology, 102(1), 88–93. https://doi.org/10.1016/j.biortech.2010.05.021
Ferro, L., Colombo, M., Posadas, E., Funk, C., & Muñoz, R. (2019). Elucidating the symbiotic interactions between a locally isolated microalga Chlorella vulgaris and its co-occurring bacterium Rhizobium sp. in synthetic municipal wastewater. Journal of Applied Phycology, 31(4), 2299-2310. https://doi.org/10.1007/s10811-019-1741-1
Food and Agriculture Organization. (2013). Report of the FAO/MARD technical workshop on early mortality syndrome (EMS) or acute hepatopancreatic necrosis syndrome (AHPNS) of cultured shrimp (under TCP/VIE/3304). FAO. http://www.fao.org/3/i3422e/i3422e00.htm
Fuentes, J. L., Garbayo, I., Cuaresma, M., Montero, Z., González-del-Valle, M., & Vilchez, C. (2016). Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds. Marine Drugs, 14(5), 100. https://doi.org/10.3390/md14050100
Ganguly, A., Banerjee, A., Mandal, A., Khan, M. A., & Mohapatra, P. K. D. (2019). Isolation and characterization of bacteria from the intestine of Clarias batrachus for probiotic organism. Proceedings of the Zoological Society, 72(4), 411-419. https://doi.org/10.1007/s12595-018-0283-x
Ghasemi, Y., Yazdi, M. T., Shafiee, A., Amini, M., Shokravi, S., & Zarrini, G. (2004). Parsiguine, a novel antimicrobial substance from Fischerella ambigua. Pharmaceutical Biology, 42(4-5), 318-322. https://doi.org/10.1080/13880200490511918
Giri, S. S., Sukumaran, V., & Oviya, M. (2013). Potential probiotic Lactobacillus plantarum VSG3 improves the growth, immunity, and disease resistance of tropical freshwater fish. Fish and Shellfish Immunology, 34(2), 660–666. https://doi.org/10.1016/j.fsi.2012.12.008
Grossart, H. P., Czub, G., & Simon, M. (2006). Algae-bacteria interactions and their effects on aggregation and organic matter flux in the sea. Environmental Microbiology, 8(6), 1074–1084. https://doi.org/10.1111/j.1462-2920.2006.00999.x
Han, J., Zhang, L., Wang, S., Yang, G., Zhao, L., & Pan, K. (2016). Co-culturing bacteria and microalgae in organic carbon containing medium. Journal of Biological Research-Thessaloniki, 23(1), 8. https://doi.org/10.1186/s40709-016-0047-6
Harikrishnan, R., Balasundaram, C., & Heo, M. S. (2010). Potential use of probiotic and triherbal extract-enriched diets to control Aeromonas hydrophila infection in carp. Disease of Aquatic Organisms, 92(1), 41–49. https://doi.org/10.3354/dao02240
Irianto, A., & Austin, B. (2002). Probiotics in aquaculture. Journal of Fish Diseases, 25(11), 633–642. https://doi.org/10.1046/j.1365-2761.2002.00422.x
Jasmin, M. Y., Wagaman, H., Yin, T. A., Ina-salwany, M. Y., Daud, H. M., & Karim, M. (2016). Screening and evaluation of local bacteria isolated from shellfish as potential probiotics against pathogenic Vibrios. Journal of Environmental Biology, 37, 801-809.
Karim, M., & Hasan, F. (2019). A comparative study of antibiotics and probiotics against pathogens isolated from coastal shrimp aquaculture system. Jordan Journal of Biological Sciences, 12(3), 323-328.
Kesarcodi-Watson, A., Kaspar, H., Lategan, M. J., & Gibson, L. (2008). Probiotics in aquaculture, the need, principles and mechanisms of action and screening processes. Aquaculture, 274(1), 1-14. https://doi.org/10.1016/j.aquaculture.2007.11.019
Kokou, F., Makridis, P., Kentouri, M., & Divanach, P. (2012). Antibacterial activity in microalgae cultures. Aquaculture Research, 43(10), 1520-1527. https://doi.org/10.1111/j.1365-2109.2011.02955.x
Labreuche, Y., Pallandre, L., Ansquer, D., Herlin, J., Wapotro, B., & Le Roux, F., (2012). Pathotyping of Vibrio isolates by multiplex PCR reveals a risk of virulent strain spreading in New Caledonian shrimp farms. Microbial Ecology, 63(1), 127–138. https://doi.org/10.1007/s00248-011-9951-3
Myers, J. E. (2016). Untangling algae-bacteria consortia: The ecological, phylogenetic, and bioremediation properties of freshwater microbiota. University of Tulsa.
Panigrahi, A., & Azad, I. S. (2007). Microbial intervention for better fish health in aquaculture: The Indian scenario. Fish Physiology and Biochemistry, 33(4), 429–440. https://doi.org/10.1007/s10695-007-9160-7
Priyadarsani, L., & Abraham, T. J. (2013). Ecology of antibiotic resistant vibrios in traditional shrimp farming system (bhery) of West Bengal, India. Journal of Coastal Life Medicine, 1(4), 265-272.
Ravi, A. V., Musthafa, K. S., Jegathammbal, G., Kathiresan, K., & Pandian, S. K. (2007). Screening and evaluation of probiotics as a biocontrol agent against pathogenic Vibrios in marine aquaculture. Letters in Applied Microbiology, 45(2), 219-223. https://doi.org/10.1111/j.1472-765x.2007.02180.x
Reda, R. M., Selim, K. M., El-Sayed, H. M., & El-Hady, M. A. (2018). In vitro selection and identification of potential probiotics isolated from the gastrointestinal tract of Nile tilapia, Oreochromis niloticus. Probiotics and Antimicrobial Proteins, 10(4), 692-703. https://doi.org/10.1007/s12602-017-9314-6
Sarter, S., Nguyen, H. N. K., Hung, L. T., Lazard, J., & Montet, D. (2007). Antibiotic resistance in Gram-negative bacteria isolated from farmed catfish. Food Control, 18(11), 1391–1396. https://doi.org/10.1016/j.foodcont.2006.10.003
Seelam, N. S., Akula, H., Katike, U., & Obulam, V. S. R. (2017). Production, characterization and optimization of fermented tomato and carrot juices by using Lysinibacillus sphaericus isolate. Journal of Applied Biology and Biotechnology, 5(4), 66-75. https://doi.org/10.7324/jabb.2017.50410
Shah, M. R., Lutzu, G. A., Alam, A., Sarker, P., Chowdhury, M. A. K., Parsaeimehr, A., Liang, Y., & Daroch, M. (2018). Microalgae in aquafeeds for a sustainable aquaculture industry. Journal of Applied Phycology, 30(1), 197–213. https://doi.org/10.1007/s10811-017-1234-z
Sharifah, E. N., & Eguchi, M. (2011). The phytoplankton Nannochloropsis oculata enhances the ability of Roseobacter clade bacteria to inhibit the growth of fish pathogen Vibrio anguillarum. PLOS One, 6(10), e26756. https://doi.org/10.1371/journal.pone.0026756
Stalin, N., & Srinivasan, P. (2017). Efficacy of potential phage cocktails against Vibrio harveyi and closely related Vibrio species isolated from shrimp aquaculture environment in the south east coast of India. Veterinary Microbiology, 207, 83-96. https://doi.org/10.1016/j.vetmic.2017.06.006
Tepaamorndech, S., Chantarasakha, K., Kingcha, Y., Chaiyapechara, S., Phromson, M., Sriariyanun, M., & Visessanguan, W. (2019). Effects of Bacillus aryabhattai TBRC8450 on vibriosis resistance and immune enhancement in Pacific white shrimp, Litopenaeus vannamei. Fish and Shellfish Immunology, 86, 4-13. https://doi.org/10.1016/j.fsi.2018.11.010
Tinh, N. T. N., Dierckens, K., Sorgeloos, P., & Bossier, P. (2007). A review of the functionality of probiotics in the larviculture food chain. Marine Biotechnology, 10(1), 1-12. https://doi.org/10.1007/s10126-007-9054-9
Vaseeharan, B., & Ramasamy, P. (2003). Control of pathogenic Vibrio spp. by Bacillus subtilis BT23, a possible probiotic treatment for black tiger shrimp Penaeus monodon. Letters in Applied Microbiology, 36(2), 83-87. https://doi.org/10.1046/j.1472-765x.2003.01255.x
Walling, E., Vourey, E., Ansquer, D., Beliaeff, B., & Goarant, C. (2010). Vibrio nigripulchritudo monitoring and strain dynamics in shrimp pond sediments. Journal of Applied Microbiology, 108(6), 2003–2011. https://doi.org/10.1111/j.1365-2672.2009.04601.x
Wang, Y., Barton, M., Elliott, L., Li, X., Abraham, S., O’Dea, M., & Munro, J. (2017). Bacteriophage therapy for the control of Vibrio harveyi in greenlip abalone (Haliotis laevigata). Aquaculture, 473, 251-258. https://doi.org/10.1016/j.aquaculture.2017.01.003
Watanabe, K., Takihana, N., Aoyagi, H., Hanada, S., Watanabe, Y., Ohmura, N., & Tanaka, H. (2005). Symbiotic association in Chlorella culture. FEMS Microbiology Ecology, 51(2), 187-196. https://doi.org/10.1016/j.femsec.2004.08.004
Yao, S., Lyu, S., An, Y., Lu, J., Gjermansen, C., & Schramm, A. (2019). Microalgae–bacteria symbiosis in microalgal growth and biofuel production: A review. Journal of Applied Microbiology, 126(2), 359-368. https://doi.org/10.1111/jam.14095
Zapata, A. A., & Lara-Flores, M. (2013). Antimicrobial activities of lactic acid bacteria strains isolated from Nile tilapia (Oreochromis niloticus) intestine. Journal of Biology and Life Science, 4(1), 123-129. https://doi.org/10.5296/jbls.v4i1.2408
ISSN 1511-3701
e-ISSN 2231-8542