e-ISSN 2231-8542
ISSN 1511-3701
Bazilah Marzaini and Aslizah Mohd-Aris
Pertanika Journal of Tropical Agricultural Science, Volume 44, Issue 2, May 2021
DOI: https://doi.org/10.47836/pjtas.44.2.01
Keywords: Antimicrobial producers, biocontrol agents, phytopathogen, plant growth-promoting microorganism (PGPM), plant pathogen
Published on: 28 May 2021
The agricultural industry worldwide faces challenges in the struggle against plant diseases. In efforts to increase agricultural intensities, the dependency on agrochemicals for crop protection has become significantly high. Moreover, the increasing use of agrochemical-based products has resulted in multidrug-resistant pathogens and environmental pollution. This paper reviews the biocontrol capacity of plant growth-promoting microorganisms (PGPMs) originating from plants towards plant pathogens. The current trend in discovering new compounds has shown antimicrobial activity gaining immense interest due to its vast potential. On a related note, PGPMs are an aspect of that research interest that can be further explored as antimicrobial producers. In this work, we also covered the types of biocontrol mechanisms pertaining to PGPMs as well as their roles in biocontrol activity. A biocontrol approach exploits disease-suppressive microorganisms to improve plant health by controlling related pathogens. The understanding of these microorganisms and mechanisms of pathogen antagonismare primary factors in ensuring improvement for future applications. Inevitably, there is indeed room for rigorous expansion with respect to PGPMs in the future of agriculture.
Abdalla, M. A., Aro, A. O., Gado, D., Passari, A. K., Mishra, V. K., Singh, B. P., & McGaw, L. J. (2020). Isolation of endophytic fungi from South African plants, and screening for their antimicrobial and extracellular enzymatic activities and presence of type I polyketide synthases. South African Journal of Botany, 134, 336-342. https://doi.org/10.1016/j.sajb.2020.03.021
Abdallah, R. A. B., Mokni-Tlili, S., Nefzi, A., Khiareddine, H. J., & Daami-Remadi, M. (2016). Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Nicotiana glauca organs. Biological Control, 97, 80-88. https://doi.org/10.1016/j.biocontrol.2016.03.005
Abro, M. A., Sun, X., Li, X., Jatoi, G. H., & Guo, L. D. (2019). Biocontrol potential of fungal endophytes against Fusarium oxysporum f. sp. cucumerinum causing wilt in cucumber. The Plant Pathology Journal, 35(6), 598-608. https://doi.org/10.5423/PPJ.OA.05.2019.0129
Agrillo, B., Mirino, S., Tatè, R., Gratino, L., Gogliettino, M., Cocca, E., Tablid, N., Nabtid, E., & Palmieri, G. (2019). An alternative biocontrol agent of soil-borne phytopathogens: A new antifungal compound produced by a plant growth promoting bacterium isolated from North Algeria. Microbiological Research, 221, 60-69. https://doi.org/10.1016/j.micres.2019.02.004
Ahmad, F., Ahmad, I., & Khan, M. S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research, 163(2), 173-181. https://doi.org/10.1016/j.micres.2006.04.001
Aktar, W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: Their benefits and hazards. Interdisciplinary Toxicology, 2(1), 1-12. https://doi.org/10.2478/v10102-009-0001-7
Anitha, A., & Rabeeth, M. (2009). Control of Fusarium wilt of tomato by bioformulation of Streptomyces griseus in green house condition. African Journal of Basic and Applied Sciences, 1(1-2), 9-14.
Arora, N. K., Kang, S. C., & Maheshwari, D. K. (2001). Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Current Science, 81(6), 673-677.
Ashwini, N., & Srividya, S. (2013). Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1. 3 Biotech, 4(2), 127-136. https://doi.org/10.1007/s13205-013-0134-4
Attia, M. S., El-Sayyad, G. S., Abd Elkodous, M., & El-Batal, A. I. (2020). The effective antagonistic potential of plant growth-promoting rhizobacteria against Alternaria solani-causing early blight disease in tomato plant. Scientia Horticulturae, 266, 109289. https://doi.org/10.1016/j.scienta.2020.109289
Azabou, M. C, Gharbi, Y., Medhioub, I., Ennouri, K., Barham, H., Tounsi, S., & Ali Triki, M. (2020). The endophytic strain Bacillus velezensis OEE1: An efficient biocontrol agent against Verticillium wilt of olive and a potential plant growth promoting bacteria. Biological Control, 142, 104168. https://doi.org/10.1016/j.biocontrol.2019.104168
Backman, P. A., & Sikora, R. A. (2008). Endophytes: An emerging tool for biological control. Biological Control, 46(1), 1-3. https://doi.org/10.1016/j.biocontrol.2008.03.009
Bacon, C. W., & White, J. F., (2000). Microbial endophytes. CRC Press.
Bahroun, A., Jousset, A., Mhamdi, R., Mrabet, M., & Mhadhbi, H. (2018). Antifungal activity of bacterial endophytes associated with legumes against Fusarium solani: Assessment of fungi soil suppressiveness and plant protection induction. Applied Soil Ecology, 124, 131-140. https://doi.org/10.1016/j.apsoil.2017.10.025
Barea, J.-M., Pozo, M. J., Azcon, R., & Azcon-Aguilar, C. (2005). Microbial co-operation in the rhizosphere. Journal of Experimental Botany, 56(417), 1761-1778. https://doi.org/10.1093/jxb/eri197
Battu, P. R., & Reddy, M. S. (2009). Isolation of secondary metabolites from Pseudomonas fluorescens and its characterization. Asian Journal of Research in Chemistry, 2, 26-29.
Beneduzi, A., Ambrosini, A., & Passaglia, L. M. P. (2012). Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 35(4 Suppl), 1044-1051. https://doi.org/10.1590/s1415-47572012000600020
Bérdy, J. (2005). Bioactive microbial metabolites. The Journal of Antibiotics, 58(1), 1-26. https://doi.org/10.1038/ja.2005.1
Calvente, V., de Orellano, M. E., Sansone, G., Benuzzi, D., & Sanz de Tosetti, M. I. (2001). Effect of nitrogen source and pH on siderophore production by Rhodotorula strains and their application to biocontrol of phytopathogenic moulds. Journal of Industrial Microbiology and Biotechnology, 26(4), 226-229. https://doi.org/10.1038/sj.jim.7000117
Carvalho, T. L. G., Balsemao-Pires, E., Saraiva, R. M., Ferreira, P. C. G., & Hemerly, A. S. (2014). Nitrogen signalling in plant interactions with associative and endophytic diazotrophic bacteria. Journal of Experimental Botany, 65(19), 5631-5642. https://doi.org/10.1093/jxb/eru319
Cawoy, H., Debois, D., Franzil, L., De Pauw, E., Thonart, P., & Ongena, M. (2014). Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens. Microbial Biotechnology, 8(2), 281-295. https://doi.org/10.1111/1751-7915.12238
Cecagno, R., Fritsch, T. E., & Schrank, I. S. (2015). The plant growth-promoting bacteria azospirillum amazonense: Genomic versatility and phytohormone pathway. BioMed Research International, 2015, 898592. https://doi.org/10.1155/2015/898592
Chen, L., Shi, H., Heng, J., Wang, D., & Bian, K. (2019). Antimicrobial, plant growth-promoting and genomic properties of the peanut endophyte Bacillus velezensis LDO2. Microbiological Research, 218, 41-48. https://doi.org/10.1016/j.micres.2018.10.002
Cheng, G., Ning, J., Ahmed, S., Huang, J., Ullah, R., An, B., Hao, H., Dai, M., Huang, L., Wang X., & Yuan, Z. (2019). Selection and dissemination of antimicrobial resistance in Agri-food production. Antimicrobial Resistance and Infection Control, 8(1), 158. https://doi.org/10.1186/s13756-019-0623-2
Chin-A-Woeng T. F. C., Bloemberg, G. V., van der Bij A. J., van der Drift, K. M. G. M., Schripsema, J., Kroon, B., Scheffer, R. J., Keel, C., Bakker, P. A. H. M., Tichy, H-V., de Bruijn, F. J., Thomas-Oates, J. E., & Lugtenberg, B. J. J. (1998). Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Molecular Plant Microbe Interactions, 11(11), 1069-1077. https://doi.org/10.1094/mpmi.1998.11.11.1069
Compant, S., Duffy, B., Nowak, J., Clement, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71(9), 4951-4959. https://doi.org/10.1128/aem.71.9.4951-4959.2005
Conrath, U., Beckers, G. J. M., Langenbach, C. J. G., & Jaskiewicz, M. R. (2015). Priming for enhanced defense. Annual Review of Phytopathology, 53, 97-119. https://doi.org/10.1146/annurev-phyto-080614-120132
Costa, F. G., Zucchi, T. D., & de Melo, I. S. (2013). Biological control of phytopathogenic fungi by endophytic actinomycetes isolated from maize (Zea mays L.). Brazilian Archives of Biology and Technology, 56(6), 948-955. https://doi.org/10.1590/s1516-89132013000600009
Darma, R., Purnamasari, M., Agustina, D., Pramudito, T. E., Sugiharti, M., & Suwanto, A. (2016). A strong antifungal-producing bacteria from bamboo powder for biocontrol of Sclerotium rolfsii in melon (Cucumis melo var. amanta). Journal of Plant Pathology and Microbiology, 7(2). https://doi.org/10.4172/2157-7471.1000334
de Souza, J. T., Weller, D. M., & Raaijmakers, J. M. (2003). Frequency, diversity, and activity of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in Dutch take-all decline soils. Phytopathology, 93, 54-63. https://doi.org/10.1094/phyto.2003.93.1.54
Druzhinina, I. S., Seidl-Seiboth, V., Herrera-Estrella, A., Horwitz, B. A., Kenerley, C. M., Monte, E., Mukherjee, P. K., Zeilinger, S., Grigoriev, I. V., & Kubicek, C. P. (2011). Trichoderma: The genomics of opportunistic success. Nature Reviews Microbiology, 9(10), 749-759. https://doi.org/10.1038/nrmicro2637
Fibach-Paldi, S., Burdman, S., & Okon, Y. (2011). Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense. FEMS Microbiology Letters, 326(2), 99-108. https://doi.org/10.1111/j.1574-6968.2011.02407.x
Fiume, G., & Fiume, F. (2008). Biological control of corky root in tomato. Communications in Agricultural and Applied Biological Sciences, 73(2), 233-248.
Fukami, J., Cerezini, P., & Hungria, M. (2018). Azospirillum: Benefits that go far beyond biological nitrogen fixation. AMB Express, 8(1), 73. https://doi.org/10.1186/s13568-018-0608-1
Gamalero, E., & Glick, B. R. (2015). Bacterial modulation of plant ethylene levels. Plant Physiology, 169(1), 13-22. https://doi.org/10.1104/pp.15.00284
Glick, B. R. (2012). Plant growth-promoting bacteria: Mechanisms and applications. Scientifica, 2012, 963401. https://doi.org/10.6064/2012/963401
Gray, E. J., & Smith, D. L. (2005). Intracellular and extracellular PGPR: Commonalities and distinctions in the plant-bacterium signalling processes. Soil Biology and Biochemistry, 37(3), 395-412. https://doi.org/10.1016/j.soilbio.2004.08.030
Harwood, C. R., Mouillon, J. M., Pohl, S., & Arnau, J. (2018). Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiology Reviews, 42(6), 721-738. https://doi.org/10.1093/femsre/fuy028
Heimpel, G., & Mills, N. (2017). Biological control: Ecology and applications. Cambridge University Press.
Hole, D. G., Perkins, A. J., Wilson, J. D., Alexander, I. H., Grice, P. V., & Evans, A. D. (2005). Does organic farming benefit biodiversity?. Biological Conservation, 122(1), 113-130. https://doi.org/10.1016/j.biocon.2004.07.018
Horrigan, L., Lawrence, R. S., & Walker, P. (2002). How sustainable agriculture can address the environmental and human health harms of industrial agriculture. Environmental Health Perspectives, 110(5), 445-456. https://doi.org/10.1289/ehp.02110445
Hossain, M. M., Sultana, F., Miyazawa, M., & Hyakumachi, M. (2014). The plant growth-promoting fungus Penicillium spp. GP15-1 enhances growth and confers protection against damping-off and anthracnose in the cucumber. Journal of Oleo Science, 63(4), 391-400. https://doi.org/10.5650/jos.ess13143
Islam, M. R., Jeong, Y. T., Lee, Y. S., & Song, C. H. (2012). Isolation and identification of antifungal compounds from Bacillus subtilis C9 inhibiting the growth of plant pathogenic fungi. Mycobiology, 40(1), 59-65. https://doi.org/10.5941/myco.2012.40.1.059
Jones, P., Garcia, B. J., Furches, A., Tuskan, G. A., & Jacobson, D. (2019). Plant host-associated mechanisms for microbial selection. Frontiers in Plant Science, 10, 862. https://doi.org/10.3389/fpls.2019.00862
Karlsson, M., Atanasova, L., Jensen, D. F., & Zeilinger, S. (2017). Necrotrophic mycoparasites and their genomes. Microbiology Spectrum, 5(2), 1005-1026. https://doi.org/10.1128/microbiolspec.funk-0016-2016
Kim, H., Rim, O. S., & Bae, H. (2018). Antimicrobial potential of metabolites extracted from ginseng bacterial endophyte Burkholderia stabilis against ginseng pathogens. Biological Control, 128, 24-30. https://doi.org/10.1016/j.biocontrol.2018.08.020
Köhl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in Plant Science, 10, 845. https://doi.org/10.3389/fpls.2019.00845
Labuschagne, N., Pretorius, T., & Idris, A. H. (2010). Plant growth promoting rhizobacteria as biocontrol agents against soil-borne plant diseases. In D. Maheshwari (Ed.), Plant growth and health promoting bacteria: Microbiology monographs (pp. 211-230). Springer. https://doi.org/10.1007/978-3-642-13612-2_9
Lacava, P. T., Li, W., Araújo, W. L., Azevedo, J. L., & Hartung, J. S. (2007). The endophyte Curtobacterium flaccumfaciens reduces symptoms caused by Xylella fastidiosa in Catharanthus roseus. Journal of Microbiology, 45(5), 388-393.
Larran, S., Simón, M. R., Moreno, M. V., Siurana, M. P. S., & Perelló, A. (2016). Endophytes from wheat as biocontrol agents against tan spot disease. Biological Control, 92, 17-23. https://doi.org/10.1016/j.biocontrol.2015.09.002
Lee, J. C., Yang, X., Schwartz, M., Strobel, G., & Clardy, J. (1995). The relationship between an endangered North American tree and an endophytic fungus. Chemistry and Biology, 2(11), 721-727. https://doi.org/10.1016/1074-5521(95)90100-0
Lee, K. J., Kamala-Kannan, S., Sub H. S., Seong, C. K., & Lee G. W. (2008). Biological control of Phytophthora blight in red pepper (Capsicum annuum L.) using Bacillus subtilis. World Journal of Microbiology and Biotechnology, 24(7), 1139-1145. https://doi.org/10.1007/s11274-007-9585-2
Li, J. Y., & Strobel, G. A. (2001). Jesterone and hydroxy-jesteroneantioomycetecyclohexenone epoxides from the endophytic fungus Pestalotiopsis jesteri. Phytochemistry, 57(2), 261-265. https://doi.org/10.1016/s0031-9422(01)00021-8
Liotti, R. G., da Silva Figueiredo, M. I., da Silva, G. F., de Mendonça, E. A. F., & Soares, M. A. (2018). Diversity of cultivable bacterial endophytes in Paulliniacupana and their potential for plant growth promotion and phytopathogen control. Microbiological Research, 207, 8-18. https://doi.org/10.1016/j.micres.2017.10.011
Maksimov, I. V., Abizgil’dina, R. R., & Pusenkova, L. I. (2011). Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (review). Applied Biochemistry and Microbiology, 47(4), 333-345. https://doi.org/10.1134/s0003683811040090
Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic and human pathogenic microorganisms. FEMS Microbiology Reviews, 37(5), 634-663. https://doi.org/10.1111/1574-6976.12028
Mishra, J., Tewari, S., Singh, S., & Arora, N. K. (2015). Biopesticides: where we stand?. In N. Arora (Ed.), Plant microbes symbiosis: Applied facets (pp. 37-75). Springer. https://doi.org/10.1007/978-81-322-2068-8_2
Moin, S., Ali, S. A., Hasan, K. A., Tariq, A., Sultana, V., Ara, J., & Ehteshamul-Haque, S. (2020). Managing the root rot disease of sunflower with endophytic fluorescent Pseudomonas associated with healthy plants. Crop Protection, 130, 105066. https://doi.org/10.1016/j.cropro.2019.105066
Montealegre, J. R., Reyes, R., Pérez, L. M., Herrera, R., Silva, P., & Besoain, X. (2003). Selection of bioantagonistic bacteria to be used in biological control of Rhizoctonia solani in tomato. Electronic Journal of Biotechnology, 6(2), 116-127. https://doi.org/10.4067/S0717-34582003000200006
Murali, M., & Amruthesh, K. N. (2015). Plant growth-promoting fungus Penicillium oxalicum enhances plant growth and induces resistance in pearl millet against downy mildew disease. Journal of Phytopathology, 163(9), 743-754. htps://doi.org/10.1111/jph.12371
Naamala, J., & Smith, D. L. (2020). Relevance of plant growth promoting microorganisms and their derived compounds, in the face of climate change. Agronomy, 10(8), 1179. https://doi.org/10.3390/agronomy10081179
Naik, R., Pawar, V., & Suryawanshi, D. (2015). In vitro biofilm formation of Pseudomonas fluorescens, a promising technique for waste water treatment. International Journal of Science and Research, 4(2), 1602-1606.
Olanrewaju, O. S., Glick, B. R., & Babalola, O. O. (2017). Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology, 33(11), 197. https://doi.org/10.1007/s11274-017-2364-9
Pahari, A., Pradhan, A., Nayak, S., & Mishra, B. B. (2017). Bacterial siderophore as a plant growth promoter. In J. K. Patra, C. Vishnuprasad, & G. Das (Eds.), Microbial biotechnology (pp.163-180). Springer. https://doi.org/10.1007/978-981-10-6847-8_7
Prapagdee, B., Kuekulvong, C., & Mongkolsuk, S. (2008). Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. International Journal of Biological Sciences, 4(5), 330-337. https://doi.org/10.7150/ijbs.4.330
Prashar, P., Kapoor, N., & Sachdeva, S. (2013). Biocontrol of plant pathogens using plant growth promoting bacteria. In E. Lichtfouse (Ed.), Sustainable agriculture reviews (Vol. 12, pp. 319-360). Springer. https://doi.org/10.1007/978-94-007-5961-9_10
Pratiwi, R. H., Hidayat, I., Hanafi, M., & Mangunwardoyo, W. (2017). Antibacterial compound produced by Pseudomonas aeruginosa strain UICC B-40, an endophytic bacterium isolated from Neesia altissima. Journal of Microbiology, 55(4), 289-295. https://doi.org/10.1007/s12275-017-6311-0
Radjacommare, R., Kandan, A., Nandakumar, R., & Samiyappan, R. (2004). Association of the hydrolytic enzyme chitinase against Rhizoctonia solani in rhizobacteria-treated rice plants. Journal of Phytopathology, 152(6), 365-370. https://doi.org/10.1111/j.1439-0434.2004.00857.x
Ramesh, R., & Phadke, G. S. (2012). Rhizosphere and endophytic bacteria for the suppression of eggplant wilt caused by Ralstonia solanacearum. Crop Protection, 37, 35-41. https://doi.org/10.1016/j.cropro.2012.02.008
Rekha, V., John, S. A., & Shankar, T. (2010). Antibacterial activity of Pseudomonas fluorescens isolated from rhizosphere soil. International Journal of Biological Technology, 1(3), 10-14.
Sang, M. K., Jeong, J.-J., Kim, J., & Kim, K. D. (2018). Growth promotion and root colonisation in pepper plants by phosphate-solubilising Chryseobacterium sp. strain ISE14 that suppresses Phytophthora blight. Annals of Applied Biology, 172(2), 208-223. https://doi.org/10.1111/aab.12413
Segarra, G., Casanova, E., Avilés, M., & Trillas, I. (2010). Trichoderma asperellum strain T34 controls Fusarium wilt disease in tomato plants in soilless culture through competition for iron. Microbial Ecology, 59(1), 141-149. https://doi.org/10.1007/s00248-009-9545-5
Sehrawat, A., & Sindhu, S. S. (2019). Potential of biocontrol agents in plant disease control for improving food safety. Defence Life Science Journal, 4(4), 220-225. https://doi.org/10.14429/dlsj.4.14966
Shen, X., Hu, H., Peng, H., Wang, W., & Zhang, X. (2013). Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas. BMC Genomics, 14(1), 271. https://doi.org/10.1186/1471-2164-14-271
Trujillo, M. E., Velázquez, E., Miguélez, S., Jiménez, M. S., Mateos, P. F., & Martínez-Molina, E. (2007). Characterization of a strain of Pseudomonas fluorescens that solubilizes phosphates in vitro and produces high antibiotic activity against several microorganisms. In E. Velázquez & C. Rodríguez-Barrueco (Eds.), First international meeting on microbial phosphate solubilisation. Developments in plant and soil sciences (Vol. 102, pp. 265-268). Springer. https://doi.org/10.1007/978-1-4020-5765-6_41
Turner, J. T., & Backman P. A. (1991). Factors relating to peanut yield increases after seed treatment with Bacillus subtilis. Plant Disease, 75(4), 347-353. https://doi.org/10.1094/PD-75-0347
Vachee, A., Mossel, D. A. A., & Leclerc, H. (1997). Antimicrobial activity among Pseudomonas and related strains of mineral water origin. Journal of Applied Microbiology, 83(5), 652-658. https://doi.org/10.1046/j.1365-2672.1997.00274.x
Vaz, A. B. M., Mota, R. C., Bomfim, M. R. Q., Vieira, M. L. A., Zani, C. L., Rosa, C. A., & Rosa, L. H. (2009). Antimicrobial activity of endophytic fungi associated with Orchidaceaein Brazil. Canadian Journal of Microbiology, 55(12), 1381-1391. https://doi.org/10.1139/w09-101
Wang, M., Li, E., Liu, C., Jousset, A., & Salles, J. F. (2017). Functionality of root-associated bacteria along a salt marsh primary succession. Frontiers in Microbiology, 8, 2102. https://doi.org/10.3389/fmicb.2017.02102
Weller, D. M. (2007). Pseudomonas biocontrol agents of soilborne pathogens: Looking back over 30 years. Phytopathology, 97(2), 250-256. https://doi.org/10.1094/phyto-97-2-0250
Wicaksono, W. A., Jones, E. E., Casonato, S., Monk, J., & Ridgway, H. J. (2018). Biological control of Pseudomonas syringae pv. actinidiae (Psa) the causal agent of bacterial canker of kiwifruit, using endophytic bacteria recovered from a medicinal plant. Biological Control, 116, 103-112. https://doi.org/10.1016/j.biocontrol.2017.03.003
Wu, H., Yan, Z., Deng, Y., Wu, Z., Xu, X., Li, X., Zhou, X., & Luo, H. (2020). Endophytic fungi from the root tubers of medicinal plant Stephania dielsiana and their antimicrobial activity. Acta Ecologica Sinica, 40(5), 383-387. https://doi.org/10.1016/j.chnaes.2020.02.008
Xu, L.-Q., Zeng, J.-W., Jiang, C.-H., Wang, H., Li, Y.-Z., Wen, W.-H., Li, J-H., Wang, F., Ting, W-J., Sun, Z-Y., & Huang, C.-Y. (2017). Isolation and determination of four potential antimicrobial components from Pseudomonas aeruginosa extracts. International Journal of Medical Sciences, 14(13), 1368-1374. https://doi.org/10.7150/ijms.18896
Xu, W., Wang, F., Zhang, M., Ou, T., Wang, R., Strobel, G., Xiang, Z., Zhou, Z., & Xie, J. (2019). Diversity of cultivable endophytic bacteria in mulberry and their potential for antimicrobial and plant growth-promoting activities. Microbiological Research, 229, 126328. https://doi.org/10.1016/j.micres.2019.126328
Zhang, Q., Acuña, J. J., Inostroza, N. G., Mora, M. L., Radic, S., Sadowsky, M. J., & Jorquera, M. A. (2019). Endophytic bacterial communities associated with roots and leaves of plants growing in Chilean extreme environments. Scientific Reports, 9(1), 4950. https://doi.org/10.1038/s41598-019-41160-x
Zheng, Y.-K., Miao, C.-P., Chen, H.-H., Huang, F.-F., Xia, Y.-M., Chen, Y.-W., & Zhao, L.-X. (2017). Endophytic fungi harbored in Panax notoginseng: Diversity and potential as biological control agents against host plant pathogens of root-rot disease. Journal of Ginseng Research, 41(3), 353-360. https://doi.org/10.1016/j.jgr.2016.07.005
Zloch, M., Thiem, D., Gadzała-Kopciuch, R., & Hrynkiewicz, K. (2016). Synthesis of siderophores by plant-associated metallotolerant bacteria under exposure to Cd2+. Chemosphere, 156, 312-325. https://doi.org/10.1016/j.chemosphere.2016.04.130
Zouari, I., Jlaiel, L., Tounsi, S., & Trigui, M. (2016). Biocontrol activity of the endophytic Bacillus amyloliquefaciens strain CEIZ-11 against Pythium aphanidermatum and purification of its bioactive compounds. Biological Control, 100, 54-62. https://doi.org/10.1016/j.biocontrol.2016.05.012
ISSN 1511-3701
e-ISSN 2231-8542