e-ISSN 2231-8542
ISSN 1511-3701
Yu Rou Ch’ng, Christina Seok Yien Yong, Siti Norhidayah Othman, Nur Ain Izzati Mohd Zainudin and Muskhazli Mustafa
Pertanika Journal of Tropical Agricultural Science, Volume 45, Issue 1, February 2022
DOI: https://doi.org/10.47836/pjtas.45.1.11
Keywords: Biological control, Foc TR4, Fusarium wilt, Panama disease, plant growth promoter, Pseudomonas aeruginosa, siderophore
Published on: 10 Febuary 2022
Bananas are one of the world’s most consumed fruits. Developing countries in the Global South depend on bananas for food security and livelihoods. Still, the banana industry also drives a multinational trade worth billions of US dollars. In addition, banana plants also hold cultural and religious significances in many Asian countries. However, banana production faces several challenges, and one of the major issues is the Fusarium wilt disease caused by the fungus Fusarium oxysporum f. sp. cubense Tropical Race 4 (Foc TR4). This disease threatens numerous banana cultivars, including the Cavendish, the most traded banana cultivar. Therefore, the objective of this study was to find effective measures to control the spread of this disease through antagonistic soil bacteria. This study isolated 14 fluorescent, siderophore-producing bacteria with in vitro inhibition rates of 21.73-50.38% against Foc TR4 from the soil surrounding banana plants. Most of the isolates were identified as Pseudomonas spp. via 16S rRNA sequencing, and phylogenetic analysis based on 16s rRNA sequences showed clustering of isolates congruent with the results of similarity searches. Three isolates that exhibited relatively higher antagonistic activity against Fusarium oxysporum f. sp. cubense compared to other isolates were JBAA132 (50.38%), K2B131 (46.28%), and KTP231 (45.38%). Isolate JBAA132 displayed differences in biochemical characteristics compared to its closest match (Pseudomonas aeruginosa type strain DSM50071). It also demonstrated nitrogen-fixing and phosphate solubilising properties common to plant growth promoters. Therefore, isolate JBAA132 may be further explored as a potential biocontrol agent in curbing the spread of Foc TR4.
Agrios, G. N. (2005). Plant diseases caused by fungi. In Plant pathology (5th ed., pp. 385–614). Elsevier Academic Press. https://doi.org/10.1016/b978-0-08-047378-9.50017-8
AL-Saleh, E., & Akbar, A. (2015). Occurrence of Pseudomonas aeruginosa in Kuwait soil. Chemosphere, 120, 100–107. https://doi.org/10.1016/j.chemosphere.2014.06.031
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
Andersson, P. F., Levenfors, J., & Broberg, A. (2012). Metabolites from Pseudomonas brassicacearum with activity against the pink snow mould causing pathogen Microdochium nivale. BioControl, 57(3), 463–469. https://doi.org/10.1007/s10526-011-9411-5
Andrews, S. C., Robinson, A. K., & Rodríguez-Quiñones, F. (2003). Bacterial iron homeostasis. FEMS Microbiology Reviews, 27(2–3), 215–237. https://doi.org/10.1016/s0168-6445(03)00055-x
Baldani, J. I., Reis, V. M., Videira, S. S., Boddey, L. H., & Baldani, V. L. D. (2014). The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: A practical guide for microbiologists. Plant and Soil, 384(1–2), 413–431. https://doi.org/10.1007/s11104-014-2186-6
Boricha, H., & Fulekar, M. (2009). Pseudomonas plecoglossicida as a novel organism for the bioremediation of cypermethrin. Biology and Medicine, 1(4), 10.
Budzikiewicz, H. (1996). Siderophores from fluorescent Pseudomonas. In Atta-ur-Rahman (Ed.), Studies in natural products chemistry (Vol. 19, pp. 793–835). Elsevier. https://doi.org/10.1016/s1572-5995(96)80019-6
Cappuccino, J. G., & Sherman, N. (2008). Microbiology: A laboratory manual (8th ed.). Pearson Education.
Chaiharn, M., Chunhaleuchanon, S., & Lumyong, S. (2009). Screening siderophore producing bacteria as potential biological control agent for fungal rice pathogens in Thailand. World Journal of Microbiology and Biotechnology, 25(11), 1919–1928. https://doi.org/10.1007/s11274-009-0090-7
Chakdar, H., Dastager, S. G., Khire, J. M., Rane, D., & Dharne, M. S. (2018). Characterization of mineral phosphate solubilizing and plant growth promoting bacteria from termite soil of arid region. 3 Biotech, 8(11), 463. https://doi.org/10.1007/s13205-018-1488-4
Chatli, A. S., Beri, V., & Sidhu, B. S. (2008). Isolation and characterisation of phosphate solubilising microorganisms from the cold desert habitat of Salix alba Linn. in trans Himalayan region of Himachal Pradesh. Indian Journal of Microbiology, 48(2), 267–273. https://doi.org/10.1007/s12088-008-0037-y
Chen, W.-J., Kuo, T.-Y., Hsieh, F.-C., Chen, P.-Y., Wang, C.-S., Shih, Y.-L., Lai, Y.-M., Liu, J.-R., Yang, Y.-L., & Shih, M.-C. (2016). Involvement of type VI secretion system in secretion of iron chelator pyoverdine in Pseudomonas taiwanensis. Scientific Reports, 6(1), 32950. https://doi.org/10.1038/srep32950
Cornelis, P., & Matthijs, S. (2007). Pseudomonas siderophores and their biological significance. In A. Varma & S. B. Chincholkar (Eds.), Soil biology (Vol. 12, pp. 193–203). Springer-Verlag. https://doi.org/10.1007/978-3-540-71160-5_9
Dhanya, S., Sherin, V., Divya, K., Sreekumar, J., & Jisha, M. S. (2020). Pseudomonas taiwanensis (MTCC11631) mediated induction of systemic resistance in Anthurium andreanum L. against blight disease and visualisation of defence related secondary metabolites using confocal laser scanning microscopy. Biocatalysis and Agricultural Biotechnology, 24, 101561. https://doi.org/10.1016/j.bcab.2020.101561
Dita, M., Barquero, M., Heck, D., Mizubuti, E. S. G., & Staver, C. P. (2018). Fusarium wilt of banana: Current knowledge on epidemiology and research needs toward sustainable disease management. Frontiers in Plant Science, 9, 1468. https://doi.org/10.3389/fpls.2018.01468
Food and Agriculture Organization of the United Nations. (2019). Food outlook — Biannual report on global food markets. FAO. https://doi.org/10.1787/agr_outlook-2019-en
Gamalero, E., & Glick, B. R. (2011). Mechanisms used by plant growth-promoting bacteria. In D. K. Maheshwari (Ed.), Bacteria in agrobiology: Plant nutrient management (pp. 17–46). Springer. http://dx.doi.org/10.1007/978-3-642-21061-7_2
Ghag, S. B., Shekhawat, U. K. S., & Ganapathi, T. R. (2015). Fusarium wilt of banana: Biology, epidemiology and management. International Journal of Pest Management, 61(3), 250–263. https://doi.org/10.1080/09670874.2015.1043972
Gupta, C. P., Sharma, A., Dubey, R. C., & Maheshwari, D. K. (1999). Pseudomonas aeruginosa (GRC1) as a strong antagonist of Macrophomina phaseolina and Fusarium oxysporum. Cytobios, 99(392), 183–189.
Habibi, S., Djedidi, S., Ohkama-Ohtsu, N., Sarhadi, W. A., Kojima, K., Rallos, R. V., Ramirez, M. D. A., Yamaya, H., Sekimoto, H., & Yokoyama, T. (2019). Isolation and screening of indigenous plant growth-promoting rhizobacteria from different rice cultivars in Afghanistan soils. Microbes and Environments, 34(4), 347–355. https://doi.org/10.1264/jsme2.ME18168
Hanson, A. (2008). Oxidative-fermentative test protocol. https://web.archive.org/web/20111014202803/http://www.microbelibrary.org/component/resource/laboratory-test/3151-oxidative-fermentative-test-protocol
Hennessy, C., Walduck, G., Daly, A., & Padovan, A. (2005). Weed hosts of Fusarium oxysporum f. sp. cubense tropical race 4 in northern Australia. Australasian Plant Pathology, 34(1), 115-117. https://doi.org/10.1071/ap04091
Ho, Y.-N., Chiang, H.-M., Chao, C.-P., Su, C.-C., Hsu, H.-F., Guo, C., Hsieh, J.-L., & Huang, C.-C. (2014). In planta biocontrol of soilborne Fusarium wilt of banana through a plant endophytic bacterium, Burkholderia cenocepacia 869T2. Plant and Soil, 387(1–2), 295–306. https://doi.org/10.1007/s11104-014-2297-0
Islam, Md. A., Nain, Z., Alam, Md. K., Banu, N. A., & Islam, Md. R. (2018). In vitro study of biocontrol potential of rhizospheric Pseudomonas aeruginosa against Fusarium oxysporum f. sp. cucumerinum. Egyptian Journal of Biological Pest Control, 28(1), 90. https://doi.org/10.1186/s41938-018-0097-1
Jayaraj, J., Parthasarathi, T., & Radhakrishnan, N. V. (2007). Characterization of a Pseudomonas fluorescens strain from tomato rhizosphere and its use for integrated management of tomato damping-off. BioControl, 52(5), 683–702. https://doi.org/10.1007/s10526-006-9046-0
Jenny, M., & Kingsbury, J. (2018). Properties and prevention: A review of Pseudomonas aeruginosa. Journal of Biology and Medical Research, 2(3), 18.
Kaushal, M., Swennen, R., & Mahuku, G. (2020). Unlocking the microbiome communities of banana (Musa spp.) under disease stressed (Fusarium wilt) and non-stressed conditions. Microorganisms, 8(3), 443. https://doi.org/10.3390/microorganisms8030443
Khoa, N. Đ., Giàu, N. Đ. N., & Tuấn, T. Q. (2016). Effects of Serratia nematodiphila CT-78 on rice bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae. Biological Control, 103, 1–10. https://doi.org/10.1016/j.biocontrol.2016.07.010
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096
Lahkar, J., Borah, S. N., Deka, S., & Ahmed, G. (2015). Biosurfactant of Pseudomonas aeruginosa JS29 against Alternaria solani: The causal organism of early blight of tomato. BioControl, 60(3), 401–411. https://doi.org/10.1007/s10526-015-9650-y
Li, P., Ma, L., Feng, Y. L., Mo, M. H., Yang, F. X., Dai, H. F., & Zhao, Y. X. (2012). Diversity and chemotaxis of soil bacteria with antifungal activity against Fusarium wilt of banana. Journal of Industrial Microbiology and Biotechnology, 39(10), 1495–1505. https://doi.org/10.1007/s10295-012-1163-4
Liao, C. H. (2006). Pseudomonas and related genera. In C. de W. Blackburn (Ed.), Food spoilage microorganisms (pp. 507–540). Woodhead Publishing Limited. https://doi.org/10.1533/9781845691417.5.507
Marcano, I.-E., Díaz-Alcántara, C.-A., Urbano, B., & González-Andrés, F. (2016). Assessment of bacterial populations associated with banana tree roots and development of successful plant probiotics for banana crop. Soil Biology and Biochemistry, 99, 1–20. https://doi.org/10.1016/j.soilbio.2016.04.013
Nasiri, H., Forouzandeh, M., Rasaee, M. J., & Rahbarizadeh, F. (2005). Modified salting-out method: High-yield, high-quality genomic DNA extraction from whole blood using laundry detergent. Journal of Clinical Laboratory Analysis, 19(6), 229–232. https://doi.org/10.1002/jcla.20083
Nasreen, M., Sarker, A., Malek, M. A., Ansaruzzaman, Md., & Rahman, M. (2015). Prevalence and resistance pattern of Pseudomonas aeruginosa isolated from surface water. Advances in Microbiology, 5(1), 74–81. https://doi.org/10.4236/aim.2015.51008
Nawangsih, A. A., & Purba, F. (2013). Isolation of fluorescent pseudomonads, heat tolerant and chitinolytic bacteria in banana rhizosphere with antagonistic activities against Fusarium oxysporum f. sp. cubense in vitro and molecular identification of selected isolates. International Society for Southeast Asian Agricultural Sciences, 19(2), 30–40.
Nishimori, E., Kita-Tsukamoto, K., & Wakabayashi, H. (2000). Pseudomonas plecoglossicida sp. nov., the causative agent of bacterial haemorrhagic ascites of ayu, Plecoglossus altivelis. International Journal of Systematic and Evolutionary Microbiology, 50(1), 83–89. https://doi.org/10.1099/00207713-50-1-83
Pérez-Miranda, S., Cabirol, N., George-Téllez, R., Zamudio-Rivera, L. S., & Fernández, F. J. (2007). O-CAS, a fast and universal method for siderophore detection. Journal of Microbiological Methods, 70(1), 127–131. https://doi.org/10.1016/j.mimet.2007.03.023
Ploetz, R. C. (2005). Panama disease: An old nemesis rears its ugly head: Part 1. The beginnings of the banana export trades. Plant Health Progress, 6(1), 18. https://doi.org/10.1094/PHP-2005-1221-01-RV
ProMusa. (n.d.). Fusarium wilt of banana. http://www.promusa.org/Fusarium+wilt
Rane, M. R., Sarode, P. D., Chaudhari, B. L., & Chincholkar, S. B. (2008). Exploring antagonistic metabolites of established biocontrol agent of marine origin. Applied Biochemistry and Biotechnology, 151(2–3), 665–675. https://doi.org/10.1007/s12010-008-8288-y
Reimer, L.C., Vetcininova, A., Carbasse J. S., Sohngen, C., Gleim, D., Ebeling, C. & Overmann, J. (2019). BacDive in 2019: Bacterial phenotypic data for High-throughput biodiversity analysis. Nucleic Acids Research, 47(D1), D631-D636. https://doi.org/10.1093/nar/gky879
Sang, M. K., & Kim, K. D. (2014). Biocontrol activity and root colonization by Pseudomonas corrugata strains CCR04 and CCR80 against Phytophthora blight of pepper. BioControl, 59(4), 437–448. https://doi.org/10.1007/s10526-014-9584-9
Saxena, A. K., Kumar, M., Chakdar, H., Anuroopa, N., & Bagyaraj, D. J. (2020). Bacillus species in soil as a natural resource for plant health and nutrition. Journal of Applied Microbiology, 128(6), 1583–1594. https://doi.org/10.1111/jam.14506
Sayyed, R. Z., & Patel, P. R. (2011). Biocontrol potential of siderophore producing heavy metal resistant Alcaligenes sp. and Pseudomonas aeruginosa RZS3 vis-à-vis organophosphorus fungicide. Indian Journal of Microbiology, 51(3), 266–272. https://doi.org/10.1007/s12088-011-0170-x
Scheerer, L., Pemsl, D., Dita, M., Vicente, L. P., & Staver, C. (2018). A quantified approach to projecting losses caused by Fusarium wilt Tropical Race 4. Acta Horticulturae, 1196, 211–218. https://doi.org/10.17660/ActaHortic.2018.1196.26
Schroth, M. N., Cho, J. J., Green, S. K., & Kominos, S. D. (2018). Epidemiology of Pseudomonas aeruginosa in agricultural areas. Journal of Medical Microbiology, 67(8), 1191–1201. https://doi.org/10.1099/jmm.0.000758
Sekhar, A. C., & Thomas, P. (2015). Isolation and identification of shoot-tip associated endophytic bacteria from banana cv. Grand Naine and testing for antagonistic activity against Fusarium oxysporum f. sp. cubense. American Journal of Plant Sciences, 06(07), 943–954. https://doi.org/10.4236/ajps.2015.67101
Sharma, M., Tarafdar, A., Ghosh, R., & Gopalakrishanan, S. (2017). Biological control as a tool for eco-friendly management of plant pathogens. In T. K. Adhya, B. B. Mishra, K. Annapurna, D. K. Verma, & U. Kumar (Eds.), Advances in soil microbiology: Recent trends and future prospects (Vol. 2, pp. 153–188). Springer Singapore. https://doi.org/10.1007/978-981-10-7380-9_8
Simeoni, L. A. (1987). Critical iron level associated with biological control of Fusarium wilt. Phytopathology, 77(6), 1057-1061. https://doi.org/10.1094/phyto-77-1057
Sneath, P. H. A., & Sokal, R. R. (1963). Numerical taxonomy: The principles and practice of numerical classification. W. H. Freeman and Company.
Su, H., Hwang, S., & Ko, W. (1986). Fusarial wilt of Cavendish bananas in Taiwan. Plant Disease, 70(9), 814-818. https://doi.org/10.1094/pd-70-814
Sudarma, I. M., & Suprapta, D. N. (2011). Diversity of soil microorganisms in banana habitats with and without Fusarium wilt symptom. Journal of International Society for Southeast Asian Agricultural Sciences, 17(1), 147–159.
Tamura, K., & Kumar, S. (2002). Evolutionary distance estimation under heterogeneous substitution pattern among lineages. Molecular Biology and Evolution, 19(10), 1727–1736. https://doi.org/10.1093/oxfordjournals.molbev.a003995
VanderMolen, G. E., Beckman, C. H., & Rodehorst, E. (1987). The ultrastructure of tylose formation in resistant banana following inoculation with Fusarium oxysporum f. sp. cubense. Physiological and Molecular Plant Pathology, 31(2), 185–200. https://doi.org/10.1016/0885-5765(87)90063-4
Vincent, C., Goettel, M. S., & Lazarovits, G. (Eds.). (2007). Biological control: A global perspective. Centre for Agriculture and Biosciences International.
Walterson, A. M., & Stavrinides, J. (2015). Pantoea: Insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiology Reviews, 39(6), 968–984. https://doi.org/10.1093/femsre/fuv027
Wang, J., Guo, X., Li, H., Qi, H., Qian, J., Yan, S., Shi, J., & Niu, W. (2019). Hydrogen sulfide from cysteine desulfurase, not 3-mercaptopyruvate sulfurtransferase, contributes to sustaining cell growth and bioenergetics in E. coli under anaerobic conditions. Frontiers in Microbiology, 10, 2357. https://doi.org/10.3389/fmicb.2019.02357
Wang, L.-T., Tai, C.-J., Wu, Y.-C., Chen, Y.-B., Lee, F.-L., & Wang, S.-L. (2010). Pseudomonas taiwanensis sp. nov., isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 60(9), 2094–2098. https://doi.org/10.1099/ijs.0.014779-0
Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73(16), 5261–5267. https://doi.org/10.1128/AEM.00062-07
Wu, W., Jin, Y., Bai, F., & Jin, S. (2015). Pseudomonas aeruginosa. In Y.-W. Tang, M. Sussman, D. Liu, I. Poxton, & J. Schwartzman (Eds.), Molecular medical microbiology (pp. 753–767). Elsevier. http://doi.org/10.1016/b978-0-12-397169-2.00041-x
Weller, D. M. (2007). Pseudomonas biocontrol agents of soilborne pathogens: Looking back over 30 years. Phytopathology, 97(2), 250–256. https://doi.org/10.1094/phyto-97-2-0250
Workman, D. (2021). Bananas exports by country 2020. https://www.worldstopexports.com/bananas-exports-country/
Yuan, J., Raza, W., Shen, Q., & Huang, Q. (2012). Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense. Applied and Environmental Microbiology, 78(16), 5942–5944. https://doi.org/10.1128/AEM.01357-12
Zacky, F. A., & Ting, A. S. Y. (2013). Investigating the bioactivity of cells and cell-free extracts of Streptomyces griseus towards Fusarium oxysporum f. sp. cubense race 4. Biological Control, 66(3), 204–208. https://doi.org/10.1016/j.biocontrol.2013.06.001
Zhou, D., Jing, T., Chen, Y., Wang, F., Qi, D., Feng, R., Xie, J., & Li, H. (2019). Deciphering microbial diversity associated with Fusarium wilt-diseased and disease-free banana rhizosphere soil. BMC Microbiology, 19(1), 161. https://doi.org/10.1186/s12866-019-1531-6
Zuo, C., Deng, G., Li, B., Huo, H., Li, C., Hu, C., Kuang, R., Yang, Q., Dong, T., Sheng, O., & Yi, G. (2018). Germplasm screening of Musa spp. for resistance to Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4). European Journal of Plant Pathology, 151(3), 723–734. https://doi.org/10.1007/s10658-017-1406-3
ISSN 1511-3701
e-ISSN 2231-8542