PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 45 (1) Feb. 2022 / JTAS-2379-2021

 

Investigating the Potential of Endophytic Lactic Acid Bacteria Isolated from Papaya Seeds as Plant Growth Promoter and Antifungal Agent

Mohammad Fahrulazri Mohd Jaini, Nurfaten Farhanah Roslan, Mohd Termizi Yusof, Noor Baity Saidi, Norhayati Ramli, Nur Ain Izzati Mohd Zainudin and Amalia Mohd Hashim

Pertanika Journal of Tropical Agricultural Science, Volume 45, Issue 1, February 2022

DOI: https://doi.org/10.47836/pjtas.45.1.12

Keywords: Antimicrobial activity, bioinoculant, endophytes, lactic acid bacteria, plant growth promotion

Published on: 10 Febuary 2022

Endophytic lactic acid bacteria (LAB) isolated from papaya seeds, including a consortium of two LAB isolates, Weissella cibaria PPKSD19 and Lactococcus lactis subsp. lactis PPSSD39 could previously inhibit papaya dieback disease causative agent, Erwinia mallotivora BT-MARDI in vitro, indicating their potential as biofertilizer. However, further characterizations on other plant growth-promoting (PGP) properties of the LABs are pre-requisite to use in agricultural settings as bio-inoculum. Hence, this study aimed to evaluate PGP potentials further and in vitro antifungal activity of the LABs against various plant pathogens. The LAB isolates were tested positive in indole-3-acetic acid (IAA), siderophore, and ammonia production and could solubilize phosphate. Weissella cibaria PPKSD19 and L. lactis subsp. lactis PPSSD39 exhibited the strongest in vitro antifungal activity against Fusarium oxysporum TKA and Curvularia lunata. Inoculum concentration of 1×108 cfu/ml of W. cibaria PPKSD19 and L. lactis subsp. lactis PPSSD39 mixture showed the highest increment in shoot and root dry weight. In conclusion, W. cibaria PPKSD19 and L. lactis subsp. lactis PPSSD39 consortium displayed promising plant probiotic potential. These results highlighted the possibility of the bacterial consortium to be exploited as bioinoculant to promote plant growth and inhibit phytopathogens causing plant diseases.

  • Abdel-Kader, M. M., El-Mougy, N. S., Aly, M. D. E., Lashin, S. M., & El-Mohamady, R. S. (2012). Soil drench with fungicides alternatives against root rot incidence of some vegetables under greenhouse conditions. International Journal of Agriculture and Forestry, 2(2), 61–69. https://doi.org/10.5923/j.ijaf.20120202.10

  • Agbaglo, S. Y., Nyaku, S. T., Vigbedor, H. D., & Cornelius, E. W. (2020). Pathogenicity of Meloidogyne incognita and Fusarium oxysporum f. sp. vasinfectum on growth and yield of two okra varieties cultivated in Ghana. International Journal of Agronomy, 2020, 8824165. https://doi.org/10.1155/2020/8824165

  • Assamoi, A. A., Krabi, E. R., Ehon, A. F., N`guessan, G. A., Niamké, L. S., & Thonart, P. (2016). Isolation and screening of Weissella strains for their potential use as starter during attiéké production. Biotechnology, Agronomy, Society and Environment, 20(3), 355–362. https://doi.org/10.25518/1780-4507.13117

  • Bashan, Y., de-Bashan, L. E., Prabhu, S. R., & Hernandez, J. P. (2014). Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998-2013). Plant Soil, 378(1–2), 1–33. https://doi.org/10.1007/s11104-013-1956-x

  • Bashan, Y., Okon, Y., & Henis, Y. (1980). Ammonia causes necrosis in tomato leaves infected with Pseudomonas tomato (Okabe) Alstatt. Physiological Plant Pathology, 17(1), 111–114. https://doi.org/10.1016/0048-4059(80)90012-0

  • Beneduzi, A., Moreira, F., Costa, P. B., Vargas, L. K., Lisboa, B. B., Favreto, R., Baldani, J. I. & Passaglia, L. M. P. (2013). Diversity and plant growth promoting evaluation abilities of bacteria isolated from sugarcane cultivated in the South of Brazil. Applied Soil Ecology, 63, 94–104. https://doi.org/10.1016/j.apsoil.2012.08.010

  • Berger, L. R., Stamford, N. P., Santos, C. E. R. S., Freitas, A. D. S., Franco, L. O., & Stamford, T. C. M. (2013). Plant and soil characteristics affected by biofertilizers from rocks and organic matter inoculated with diazotrophic bacteria and fungi that produce chitosan. Journal of Soil Science and Plant Nutrition, 13(3), 592–603. https://doi.org/10.4067/S0718-95162013005000047

  • Bullerman, L. B., & Tsai, W. J. (1994). Incidence and levels of Fusarium moniliforme, Fusarium proliferatum and fumonisins in corn and corn-based foods and feeds. Journal of Food Protection, 57(6), 541–546. https://doi.org/10.4315/0362-028X-57.6.541

  • Caplice, E., & Fitzgerald, G. F. (1999). Food fermentations: Role of microorganisms in food production and preservation. International Journal of Food Microbiology, 50(1-2), 131–149. https://doi.org/10.1016/S0168-1605(99)00082-3

  • Cappuccino, J. G., & Sherman, N. (1996). Instructor’s guide for microbiology: A laboratory manual. Benjamin-Cummings Publishing Company.

  • Christensen, G. D., Baldassarri, L., & Simpson, W. A. (1995). [38] Methods for studying microbial colonization of plastics. Methods in Enzymology, 253, 477–500. https://doi.org/10.1016/s0076-6879(95)53040-1

  • Collavino, M. M., Sansberro, P. A., Mroginski, L. A., & Aguilar, O. M. (2010). Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biology and Fertility of Soils, 46, 727–738. https://doi.org/10.1007/s00374-010-0480-x

  • da Silva, T. F., Vollú, R. E., Jurelevicius, D., Alviano, D. S., Alviano, C. S., Blank, A. F., & Seldin, L. (2013). Does the essential oil of Lippia sidoides Cham. (pepper-rosmarin) affect its endophytic microbial community?. BMC Microbiology, 13, 29. https://doi.org/10.1186/1471-2180-13-29

  • de Lacerda, J. R. M., da Silva, T. F., Vollú, R. E., Marques, J. M., & Seldin, L. (2016). Generally recognized as safe (GRAS) Lactococcus lactis strains associated with Lippia sidoides Cham. are able to solubilize/mineralize phosphate. SpringerPlus, 5, 828. https://doi.org/10.1186/s40064-016-2596-4

  • Doumbou, C. L., Salove, M. K. H., Crawford, D. L., & Beaulieu, C. (2001). Actinomycetes, promising tools to control plant diseases and to promote plant growth. Phytoprotection, 82(3), 85–102. https://doi.org/10.7202/706219ar

  • Ehmann, A. (1977). The van Urk-Salkowski reagent-a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. Journal of Chromatography, 132(2), 267–276. https://doi.org/10.1016/S0021-9673(00)89300-0

  • Enan, G., Abdel-shafi, S., Ouda, S., & Negm, S. (2013). Novel antibacterial activity of Lactococcus lactis subspecies lactis Z11 isolated from Zabady. International Journal of Biomedical Science, 9(3), 174–180.

  • Fravel, D. R., & Larkin, R. P. (2002). Reduction of fusarium wilt of hydroponically grown basil by Fusarium oxysporum strain CS-20. Crop Protection, 21(7), 539–543. https://doi.org/10.1016/S0261-2194(01)00143-0

  • Gholami, A., Shahsavani, S., & Nezarat, S. (2009). The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. World Academy of Science, Engineering and Technology, 49, 19–24. https://doi.org/10.5281/zenodo.1083385

  • Giassi, V., Kiritani, C., & Kupper, K. C. (2016). Bacteria as growth-promoting agents for citrus rootstocks. Microbiological Research, 190, 46–54. https://doi.org/10.1016/j.micres.2015.12.006

  • Gull, M., & Hafeez, F. Y. (2012). Characterization of siderophore producing bacterial strain Pseudomonas fluorescens Mst 8.2 as plant growth promoting and biocontrol agent in wheat. African Journal of Microbiology Research, 6(33), 6308-6318. https://doi.org/10.5897/AJMR12.1285

  • Grönemeyer, J. L., Burbano, C. S., Hurek, T., & Reinhold-Hurek, B. (2012). Isolation and characterization of root-associated bacteria from agricultural crops in the Kavango region of Namibia. Plant Soil, 356(1), 67–82. https://doi.org/10.1007/s11104-011-0798-7

  • Hayat, R., Ali, S., Amara, U., Khalid, R., & Ahmed, I. (2010). Soil beneficial bacteria and their role in plant growth promotion: A review. Annals of Microbiology, 60(4), 579–598. https://doi.org/10.1007/s13213-010-0117-1

  • Helal, R. B., Hosen, S., & Shamsi, S. (2018). Mycoflora associated with post-harvest disease of papaya (Carica papaya L.) and their pathogenic potentiality. Bangladesh Journal of Botany, 47(3), 389–395. https://doi.org/10.3329/bjb.v47i3.38656

  • Ho, H. L. (2015). Xylanase production by Bacillus subtilis using carbon source of inexpensive agricultural wastes in two different approaches of submerged fermentation (SmF) and solid state fermentation (SsF). Journal of Food Processing and Technology, 6(4), 1000437. https://doi.org/10.4172/2157-7110.1000437

  • Jaber, L. R., & Enkerli, J. (2017). Fungal entomopathogens as endophytes: Can they promote plant growth?. Biocontrol Science and Technology, 27(1), 28–41. https://doi.org/10.1080/09583157.2016.1243227

  • Kamboj, K., Vasquez, A., & Balada-Llasat, J. M. (2015). Identification and significance of Weissella species infections. Frontiers in Microbiology, 6, 1204. https://doi.org/10.3389/fmicb.2015.01204

  • Kang, M. S., Chung, J., Kim, S. M., Yang, K. H., & Oh, J. S. (2006). Effect of Weissella cibaria isolates on the formation of Streptococcus mutans biofilm. Caries Research, 40(5), 418-425. https://doi.org/10.1159/000094288

  • Kang, S. M., Radhakrishnan, R., You, Y. H., Khan, A. L., Park, J. M., Lee, S. M., & Lee, I. J. (2015). Cucumber performance is improved by inoculation with plant growth-promoting microorganisms. Acta Agriculturae Scandinavica, Section B — Soil and Plant Science, 65(1), 36–44. https://doi.org/10.1080/09064710.2014.960889

  • Kasana, R. C., Salwan, R., Dhar, H., Dutt, S., & Gulati, A. (2008). A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Current Microbiology, 57(5), 503–507. https://doi.org/10.1007/s00284-008-9276-8

  • Khan, M. S., Zaidi, A., & Ahmad, E. (2014). Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms. In M. Khan, A. Zaidi, & J. Musarrat (Eds.), Phosphate solubilizing microorganisms (pp. 31–62). Springer. https://doi.org/10.1007/978-3-319-08216-5_2

  • Kim, J. D. (2005). Antifungal activity of lactic acid bacteria isolated from Kimchi against Aspergillus fumigatus. Mycobiology, 33(4), 210–214. https://doi.org/10.4489/myco.2005.33.4.210

  • Liu, T., Xu, S., Liu, L., Zhou, F., Hou, J., & Chen, J. (2011). Cloning and characteristics of Brn1 gene in Curvularia lunata causing leaf spot in maize. European Journal of Plant Pathology, 131, 211–219. https://doi.org/10.1007/s10658-011-9800-8

  • Lorck, H. (1948). Production of hydrocyanic acid by bacteria. Physiologia Plantarum, 1(2), 142–146. https://doi.org/10.1111/j.1399-3054.1948.tb07118.x

  • Lutz, M. P., Michel, V., Martinez, C., & Camps, C. (2012). Lactic acid bacteria as biocontrol agents of soil-borne pathogens. IOBC-WPRS Bulletin, 78, 285–288

  • Marag, P. S., & Suman, A. (2018). Growth stage and tissue specific colonization of endophytic bacteria having plant growth promoting traits in hybrid and composite maize (Zea mays L.). Microbiological Research, 214, 101–113. https://doi.org/10.1016/j.micres.2018.05.016

  • Marques, A. P. G. C., Pires, C., Moreira, H., Rangel, A. O. S. S., & Castro, P. M. L. (2010). Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biology and Biochemistry, 42(8), 1229–1235. https://doi.org/10.1016/j.soilbio.2010.04.014

  • Mauch, A., Dal Bello, F., Coffey, A., & Arendt, E. K. (2010). The use of Lactobacillus brevis PS1 to in vitro inhibit the outgrowth of Fusarium culmorum and other common Fusarium species found on barley. International Journal of Food Microbiology, 141(1–2), 116–121. https://doi.org/10.1016/j.ijfoodmicro.2010.05.002

  • Mohite, B. (2013). Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. Journal of Soil Science and Plant Nutrition, 13(3), 638–649. https://doi.org/10.4067/S0718-95162013005000051

  • Morales-Cedeño, L. R., del Carmen Orozco-mosqueda, M., Loeza-lara, P. D., Parra-Cota, F. I., de los Santos-villalobos, S., & Santoyo, G. (2020). Plant growth-promoting bacterial endophytes as biocontrol agents of pre- and post-harvest diseases: Fundamentals, methods of application and future perspectives. Microbiology Research, 242, 126612. https://doi.org/10.1016/j.micres.2020.126612

  • Nawawi, M. H., Mohamad, R., Tahir, P. M., & Saad, W. Z. (2017). Extracellular xylanopectinolytic enzymes by Bacillus subtilis ADI1 from EFB’s compost. International Scholarly Research Notices, 2017, 7831954. https://doi.org/10.1155/2017/7831954

  • Ndagano, D., Lamoureux, T., Dortu, C., Vandermoten, S., & Thonart, P. (2011). Antifungal activity of 2 lactic acid bacteria of the Weissella genus isolated from food. Journal of Food Science, 76(6), M305–M311. https://doi.org/10.1111/j.1750-3841.2011.02257.x

  • Nimnoi, P., & Pongslip, N. (2009). Genetic diversity and plant-growth promoting ability of the indole-3-acetic acid (IAA) synthetic bacteria isolated from agricultural soil as well as rhizosphere, rhizoplane and root tissue of Ficus religiosa L., Leucaena leucocephala and Piper sarmentosum Roxb. Research Journal of Agriculture and Biological Sciences, 5(1), 29–41.

  • Passari, A. K., Mishra, V. K., Gupta, V. K., Yadav, M. K., Saikia, R., & Singh, B. P. (2015). In vitro and in vivo plant growth promoting activities and DNA fingerprinting of antagonistic endophytic actinomycetes associates with medicinal plants. PLOS One, 10(9), e0139468. https://doi.org/10.1371/journal.pone.0139468

  • Pham, V. T. K., Rediers, H., Ghequire, M. K. G., Nguyen, H. H., De Mot, R., Vanderleyden, J., & Spaepen, S. (2017). The plant growth-promoting effect of the nitrogen-fixing endophyte Pseudomonas stutzeri A15. Archives of Microbiology, 199(3), 513–517. https://doi.org/10.1007/s00203-016-1332-3

  • Procópio, R. E. L., Araújo, W. L., Maccheroni Jr., W., & Azevedo, J. L. (2009). Characterization of an endophytic bacterial community associated with Eucalyptus spp. Genetics and Molecular Research, 8(4), 1408–1422. https://doi.org/10.4238/vol8-4gmr691

  • Rahman, M. A., Begum, M. F., & Alam, M. F. (2009). Screening of Trichoderma isolates as a biological control agent against Ceratocystis paradoxa causing pineapple disease of sugarcane. Mycobiology, 37(4), 277–285. https://doi.org/10.4489/MYCO.2009.37.4.277

  • Rijavec, T., & Lapanje, A. (2016). Hydrogen cyanide in the rhizosphere: Not suppressing plant pathogens, but rather regulating availability of phosphate. Frontiers in Microbiology, 7, 1785. https://doi.org/10.3389/fmicb.2016.01785

  • Rzheyskaya, V. S., Teplitskaya, L. M., & Oturina, I. P. (2013). Colonization of rhizoplane of cucumber roots by microorganisms which are components of the microbial preparation “Embiko®”. Regulatory Mechanisms in Biosystems, 4(2), 63–70. https://doi.org/10.15421/021311

  • Schwyn, B., & Neilands, J. B. (1987). Universal chemical assay for the detection determination of siderophores. Analytical Biochemistry, 160(1), 47–56. https://doi.org/10.1016/0003-2697(87)90612-9

  • Shrestha, A., Kim, B. S., & Park, D. H. (2014). Biological control of bacterial spot disease and plant growth-promoting effects of lactic acid bacteria on pepper. Biocontrol Science and Technology, 24(7), 763–779. https://doi.org/10.1080/09583157.2014.894495

  • Siddiqui, Z. A. (2005). PGPR: Prospective biocontrol agents of plant pathogens. In Z. A. Siddiqui (Ed.), PGPR: Biocontrol and biofertilization (pp. 111–142). Springer. https://doi.org/10.1007/1-4020-4152-7_4

  • Siezen, R. J., Starrenburg, M. J. C., Boekhorst, J., Renckens, B., Molenaar, D., & van Hylckama Vlieg, J. E. (2008). Genome-scale genotype-phenotype matching of two Lactococcus lactis isolates from plants identifies mechanisms of adaptation to the plant niche. Applied and Environmental Microbiology, 74(2), 424–436. https://doi.org/10.1128/AEM.01850-07

  • Singh, A., Kaur, A., Dua, A., & Mahajan, R. (2015). An efficient and improved methodology for the screening of industrially valuable xylano-pectino-cellulolytic microbes. Enzyme Research, 2015, 725281. https://doi.org/10.1155/2015/725281

  • Somers, E., Amke, A., Croonenborghs, A., van Overbeek, L. S., & Vanderleyden, J. (2007, August 26-31). Lactic acid bacteria in organic agricultural soils [Poster presentation]. Rhizosphere 2 Conference 2007, Montpellier, France. https://research.wur.nl/en/publications/lactic-acid-bacteria-in-organic-agricultural-soils

  • Stiles, M. E., & Holzapfel, W. H. (1997). Lactic acid bacteria of foods and their current taxonomy. International Journal of Food Microbiology, 36(1), 1–29. https://doi.org/10.1016/S0168-1605(96)01233-0

  • Strafella, S., Simpson, D. J., Khanghahi, M. Y., De Angelis, M., Gänzle, M., Minervini, F., & Crecchio, C. (2021). Comparative genomics and in vitro plant growth promotion and biocontrol traits of lactic acid bacteria from the wheat rhizosphere. Microorganisms, 9(1), 78. https://doi.org/10.3390/microorganisms9010078

  • Taha, M. D. M., Jaini, M. F. M., Saidi, N. B., Rahim, R. A., Shah, U. K. M., & Hashim, A. M. (2019). Biological control of Erwinia mallotivora, the causal agent of papaya dieback disease by indigenous seed-borne endophytic lactic acid bacteria consortium. PLOS One, 14(12), e0224431. https://doi.org/10.1371/journal.pone.0224431

  • Tann, H., & Soytong, K. (2017). Biological control of brown leaf spot disease caused by Curvularia lunata and field application method on rice variety IR66 in Cambodia. AGRIVITA Journal of Agricultural Science, 39(1), 111–117. https://doi.org/10.17503/agrivita.v39i1.768

  • Time and Date (n.d.). Weather in Malaysia. Retrieved from 5th April, 2021, from https://www.timeanddate.com/weather/malaysia/

  • Tiru, M., Muleta, D., Berecha, G., & Adugna, G. (2013). Antagonistic effects of rhizobacteria against coffee wilt disease caused by Gibberella xylarioides. Asian Journal of Plant Pathology, 7(3), 109–122. https://doi.org/10.3923/ajppaj.2013.109.122

  • Trias, R., Bañeras, L., Montesinos, E., & Badosa, E. (2008). Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. International Microbiology, 11(4), 231–236. https://doi.org/10.2436/20.1501.01.66

  • Valencia-Hernández, L. J., López-López, K., & Serna-Cock, L. (2016). Weissella cibaria fungistatic activity against Fusarium spp. affecting yellow pitahaya. American Journal of Applied Sciences, 13(12), 1354–1364. https://doi.org/10.3844/ajassp.2016.1354.1364

  • Valerio, F., Favilla, M., De Bellis, P., Sisto, A., de Candia, S., & Lavermicocca, P. (2009). Antifungal activity of strains of lactic acid bacteria isolated from a semolina ecosystem against Penicillium roqueforti, Aspergillus niger and Endomyces fibuliger contaminating bakery products. Sytematic and Applied Microbiology, 32(6), 438–448. https://doi.org/10.1016/j.syapm.2009.01.004

  • Viruel, E., Erazzú, L. E., Martínez Calsina, L., Ferrero, M. A., Lucca, M. E., & Siñeriz, F. (2014). Inoculation of maize with phosphate solubilizing bacteria: Effect on plant growth and yield. Journal of Soil Science and Plant Nutrition, 14(4), 819–831. https://doi.org/10.4067/S0718-95162014005000065

  • Wang, X., Shen, J., & Liao, H. (2010). Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops?. Plant Science, 179(4), 302–306. https://doi.org/10.1016/j.plantsci.2010.06.007

  • Wei, G., Kloepper, J. W., & Tuzun, S. (1991). Induction of systemic resistance of cucumber to Colletrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology, 81(11), 1508–1512. https://doi.org/10.1094/Phyto-81-1508

  • Zaidi, A. H., Bakkes, P. J., Krom, B. P., van der Mei, H. C., & Driessen, A. J. M. (2011). Cholate-stimulated biofilm formation by Lactococcus lactis cells. Applied and Environmental Microbiology, 77(8), 2602–2610. https://doi.org/10.1128/AEM.01709-10

  • Zainudin, N. A. I. M., Hamzah, F. A., Kusai, N. A., Zambri, N. S., & Salleh, S. (2017). Characterization and pathogenicity of Fusarium proliferatum and Fusarium verticillioides, causal agents of Fusarium ear rot of corn. Turkish Journal of Biology, 41(1), 220–230. https://doi.org/10.3906/biy-1606-25

  • Zakaria, L., Chik, M. W., Heng, K. W., & Salleh, B. (2012). Fusarium species associated with fruit rot of banana (Musa spp.), papaya (Carica papaya) and guava (Psidium guajava). Malaysian Journal of Microbiology, 8(2), 127–130.

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JTAS-2379-2021

Download Full Article PDF

Share this article

Recent Articles