e-ISSN 2231-8542
ISSN 1511-3701
Siti Nor Azizah Mahamud, Tasiu Mallam Hamisu, Juan Luis Criado Rius, Shyong Wey Ong and Abdul Rahman Omar
Pertanika Journal of Tropical Agricultural Science, Volume 46, Issue 3, August 2023
DOI: https://doi.org/10.47836/pjtas.46.3.03
Keywords: Antibody titer, ELISA, HI, inactivated vaccine, LaSota, seroconversion
Published on: 30 August 2023
This research aims to evaluate the immunogenicity of different doses of HIPRAVIAR® BPL2 inactivated Newcastle disease virus (NDV) LaSota vaccine. Specific-pathogen-free day-old chicks were divided into 3 different groups, and each group was vaccinated subcutaneously with the vaccine dose of 0.1, 0.2, and 0.5 ml, respectively. Blood samples were collected to measure NDV-specific antibody titers using a hemagglutination inhibition (HI) test and enzyme-linked immunosorbent assay (ELISA). The HI result showed that birds vaccinated with 0.5 ml HIPRAVIAR® BPL2 vaccine showed an increased statistically significant antibody titer compared to the other doses. Similarly, the ELISA result corroborated the HI finding. No significant difference between the results was detected when the antibody titers were measured using two ELISA kits, Biocheck CK116, and CIVTEST® AVI NDV. The percentage antibody-positive test based on HI amongst the different days post-vaccination showed that all the birds were positive from 28 to 42 days following vaccination with HIPRAVIAR® BPL2 0.5 ml (group D), whereas the highest percentage of antibody positivity were 80% and 70% at 42 days post-vaccination with HIPRAVIAR® BPL2 0.1 ml (group B) and HIPRAVIAR® BPL2 0.2 ml (group C), respectively. In conclusion, besides the difference in seroconversion, all the vaccine doses used had important levels of seroconversion and positivity.
Alexander, D. J. (2000). Newcastle disease and other avian paramyxoviruses. Revue Scientifique et Technique, 19(2), 443–462. https://doi.org/10.20506/rst.19.2.1231
Alexander, D. J., & Jones, R. C. (2008). Paramyxoviridae. In M. Pattison, P. McMullin, J. M. Bradbury, & D. Alexander (Eds.), Poultry diseases (6th ed., pp. 294-316). Saunders Ltd. https://doi.org/10.1016/B978-0-7020-2862-5.50030-1
Abdurofi, I., Ismail, M. M., Kamal, H. A. W., & Gabdo, B. H. (2017). Economic analysis of broiler production in Peninsular Malaysia. International Food Research Journal, 24(2), 761.
Aldous, E. W., Mynn, J. K., Banks, J., & Alexander, D. J. (2003). A molecular epidemiological study of avian paramyxovirus type 1 (Newcastle disease virus) isolates by phylogenetic analysis of a partial nucleotide sequence of the fusion protein gene. Avian Pathology, 32(3), 239–256. https://doi.org/10.1080/030794503100009783
Beard, C. W., Hopkins, S. R., & Hammond, J. (1975). Preparation of Newcastle disease virus hemagglutination-inhibition test antigen. Avian Diseases, 19(4), 692–699.
Bello, M. B., Mahamud, S. N. A., Yusoff, K., Ideris, A., Hair-Bejo, M., Peeters, B., & Omar, A. R. (2020). Development of an effective and stable genotype-matched live attenuated Newcastle disease virus vaccine based on a novel naturally recombinant Malaysian isolate using reverse genetics. Vaccines, 8(2), 270. https://doi.org/10.3390/vaccines8020270
Brown, J., Resurreccion, R. S., & Dickson, T. G. (1990). The relationship between the hemagglutination-inhibition test and the enzyme-linked immunosorbent assay for the detection of antibody to Newcastle disease. Avian Diseases, 34(3), 585–587. https://doi.org/10.2307/1591248
Boursnell, M. E., Green, P. F., Campbell, J. I., Deuter, A., Peters, R. W., Tomley, F. M., Samson, A. C., Chambers, P., Emmerson, P. T., & Binns, M. M. (1990). Insertion of the fusion gene from Newcastle disease virus into a non-essential region in the terminal repeats of fowlpox virus and demonstration of protective immunity induced by the recombinant. Journal of General Virology, 71(3), 621–628. https://doi.org/10.1099/0022-1317-71-3-621
Chimeno, Z. S., Gómez, E., Carrillo, E., & Berinstein, A. (2008). Locally produced mucosal IgG in chickens immunized with conventional vaccines for Newcastle disease virus. Brazilian Journal of Medical and Biological Research, 41(4), 318–323. https://doi.org/10.1590/S0100-879X2008000400010
Czifra, G., Mészáros, J., Horváth, E., Moving, V., & Engström, B. E. (1998). Detection of NDV-specific antibodies and the level of protection provided by a single vaccination in young chickens. Avian Pathology, 27(6), 562–565. https://doi.org/10.1080/03079459808419384
Dimitrov, K. M., Abolnik, C., Afonso, C. L., Albina, E., Bahl, J., Berg, M., Braids, F. X., Brown, I.H., Choi, K. S., Diel, D. G., Durr, P. A., Ferreiraa, H. L., Furaso, A., Gil, P., Goujgoulova, G. V., Grund, C., Hicks, J., T, Wong, F. Y. K., & Diel, D. G. (2019). Updated unified phylogenetic classification system and revised nomenclature for Newcastle disease virus. Infection, Genetics and Evolution, 74, 103917. https://doi.org/10.1016/j.meegid.2019.103917
Diel, D. G., da Silva, L. H., Liu, H., Wang, Z., Miller, P. J., & Afonso, C. L. (2012). Genetic diversity of avian paramyxovirus type 1: proposal for a unified nomenclature and classification system of Newcastle disease virus genotypes. Infection, Genetics and Evolution, 12(8), 1770–1779. https://doi.org/10.1016/j.meegid.2012.07.012
Dimitrov, K. M., Afonso, C. L., Yu, Q., & Miller, P. J. (2017). Newcastle disease vaccines - A solved problem or a continuous challenge? Veterinary Microbiology, 206, 126–136. https://doi.org/10.1016/j.vetmic.2016.12.019
Gallili, G. E., & Ben-Nathan, D. (1998). Newcastle disease vaccines. Biotechnology Advances, 16(2), 343–366. https://doi.org/10.1016/s0734-9750(97)00081-5
Gergen, L., Cook, S., Ledesma, B., Cress, W., Higuchi, D., Counts, D., Cruz-Coy, J., Crouch, C., Davis, P., Tarpey I., & Morsey, M. (2019). A double recombinant herpes virus of turkeys for the protection of chickens against Newcastle, infectious laryngotracheitis and Marek’s diseases, Avian Pathology, 48(1), 45-56, https://doi.org/10.1080/03079457.2018.1546376
Hines, N. L. & Miller, C. L. (2012). Avian paramyxovirus serotype-1: A review of disease distribution, clinical symptoms, and laboratory diagnostics. Veterinary Medicine International, 2012, 708216. https://doi.org/10.1155/2012/708216
Igwe, A. O., Nnsewo, U. E., Eze, D. C., Abba, Y., & Okoye, J. O. A. (2019). Increased doses of La Sota vaccine increased Newcastle disease antibody response significantly in broiler chickens (Gallus gallus domesticus). Journal of Applied Animal Research, 47(1), 423–428. https://doi.org/10.1080/09712119.2019.1645675
International Committee on Taxonomy of Viruses. (2019, July 7). Virus Taxonomy. https://talk.ictvonline.org/taxonomy/.
Jindal, N., Chander, Y., Primus, A., Redig, P. T., & Goyal, S. M. (2010). Isolation and molecular characterization of Newcastle disease viruses from raptors. Avian Pathology, 39(6), 441– 445. https://doi.org/10.1080/03079457.2010.517249
Maas, R. A., Oei, H. L., Venema-Kemper, S., Koch, G., & Bongers, J. (1999). Dose-response effects of inactivated Newcastle disease vaccines: Influence of serologic assay, time after vaccination, and type of chickens. Avian Diseases, 43(4), 670–677. https://doi.org/10.2307/1592736
Mahamud, S. N., Bello, M. B., Ideris, A., & Omar, A. R. (2022). Efficacy of genotype-matched Newcastle disease virus vaccine formulated in carboxymethyl sago starch acid hydrogel in chickens vaccinated via different routes. Journal of Veterinary Science, 23(4), e25. https://doi.org/10.4142/jvs.21242
Mao, Q., Ma, S., Schrickel, P.L., Zhao, P., Wang, J., Zhang, Y., Li, S., & Wang, C.
(2022). Review detection of Newcastle disease virus. Frontier of Veterinary Sciences, 9:936251. https://doi.org/10.3389/fvets.2022.936251
Marangon, S., & Busani, L. (2007). The use of vaccination in poultry production. Revue Scientifique et Technique-Office International des Epizooties, 26(1), 265–274. https://doi.org/10.20506/RST.26.1.1742
Martinez, J. C. S., Chou, W. K., Berghman, L. R., & Carey, J. B. (2018). Evaluation of the effect of live LaSota Newcastle disease virus vaccine as primary immunization on immune development in broilers. Poultry Science, 97(2), 455–462. https://doi.org/10.3382/ps/pex339
Miller, P. J., King, D. J., Afonso, C. L., & Suarez, D. L. (2007). Antigenic differences among Newcastle disease virus strains of different genotypes used in vaccine formulation affect viral shedding after a virulent challenge. Vaccine, 25(41), 7238–7246. https://doi.org/10.1016/j.vaccine.2007.07.017
Miller, P. J., Estevez, C., Yu, Q., Suarez, D. L., & King, D. J. (2009). Comparison of viral shedding following vaccination with inactivated and live Newcastle disease vaccines formulated with wild-type and recombinant viruses. Avian Diseases, 53(1), 39-49.
Miller, P. J., Afonso, C. L., El Attrache, J., Dorsey, K. M., Courtney, S. C., Guo, Z., & Kapczynski, D. R. (2013). Effects of Newcastle disease virus vaccine antibodies on the shedding and transmission of challenge viruses. Developmental & Comparative Immunology, 41(4), 505-513. https://doi.org/10.1016/j.dci.2013.06.007
Miller, P. J., Haddas, R., Simanov, L., Lublin, A., Rehmani, S. F., Wajid, A., Bibi, T., Khan, T. A., Yaqub, T., Setiyaningsih, S., & Afonso, C. L. (2015). Identification of new sub-genotypes of virulent Newcastle disease virus with potential panzootic features. Infection, Genetics and Evolution, 29, 216–229. https://doi.org/10.1016/j.meegid.2014.10.032
Naguib, M. M., Höper, D., Elkady, M. F., Afifi, M. A., Erfan, A., Abozeid, H. H., Hasan, W. M., Arafa A. S., Shahein, M., Beer, M., Harder T. C., & Grund, C. (2022). Comparison of genomic and antigenic properties of Newcastle Disease virus genotypes II, XXI and VII from Egypt do not point to antigenic drift as selection marker. Transboundary and Emerging Diseases, 69(2), 849-863. https://doi.org/10.1111/tbed.14121
Nooruzzaman, M., Hossain, I., Begum, J. A., Moula, M., Khaled, S. A., Parvin, R., Chowdhury, E. H., Islam, M. R, Diel, D. G., & Dimitrov, K. M. (2022). The first report of a virulent Newcastle disease virus of genotype VII. 2 causing outbreaks in chickens in Bangladesh. Viruses, 14(12), 2627. https://doi.org/10.3390/v14122627
Samal, S. K. (2008). Paramyxoviruses of animals. In Encyclopedia of Virology (3rd ed., pp. 40–47). Academic Press. https://doi.org/10.1016/B978-012374410-4.00460-X
Shohaimi, S. A., Raus, R. A., Huai, O. G., Asmayatim, B. M., Nayan, N., & Yusuf, A. M. (2015). Sequence and phylogenetic analysis of Newcastle disease virus genotype VII isolated in Malaysia during 1999- 2012. Jurnal Teknologi, 77(25). https://doi.org/10.11113/jt.v77.6757
Suarez, D. L., Miller, P. J., Koch, G., Mundt, E., & Rautenschlein, S. (2020). Newcastle disease, other avian paramyxoviruses, and avian metapneumovirus infections. In D. E. Swayne, M. Boulianne, C. M. Logue, L. R. McDougald, V. Nair, D. L. Suarez, S. de Wit, T. Grimes, D. Johnson, M. Kromm, T. Y. Prajitno, I. Rubinoff, & G. Zavala (Eds.), Diseases of poultry (14th ed., pp. 109-166). John Wiley & Sons, Inc. https://doi.org/10.1002/9781119371199.ch3
World Organisation for Animal Health. (2012). Newcastle disease (infection with Newcastle disease virus). https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.03.14_NEWCASTLE_DIS.pdf
Tavakoli, A., Rezaei, F., Fatemi Nasab, G. S., Adjaminezhad-Fard, F., Noroozbabaei, Z., & Mokhtari-Azad, T. (2017). The comparison of sensitivity and specificity of ELISA-based microneutralization test with hemagglutination inhibition test to evaluate neutralizing antibody against influenza virus (H1N1). Iranian Journal of Public Health, 46(12), 1690–1696.
Snoeck, C. J., Owoade, A. A., Couacy-Hymann, E., Alkali, B. R., Okwen, M. P., Adeyanju, A. T., Komoyo, G. F., Nakouné, E., Le Faou, A., & Muller, C. P. (2013). High genetic diversity of Newcastle disease virus in poultry in West and Central Africa: cocirculation of genotype XIV and newly defined genotypes XVII and XVIII. Journal of Clinical Microbiology, 51(7), 2250–2260. https://doi.org/10.1128/JCM.00684-13
ISSN 1511-3701
e-ISSN 2231-8542