Home / Regular Issue / JTAS Vol. 46 (3) Aug. 2023 / JTAS-2639-2022


Immunity Evaluation of Inactivated Newcastle Disease Virus Vaccine Inoculated at Different Doses in Day-old Specific-pathogen-free Chicks

Siti Nor Azizah Mahamud, Tasiu Mallam Hamisu, Juan Luis Criado Rius, Shyong Wey Ong and Abdul Rahman Omar

Pertanika Journal of Tropical Agricultural Science, Volume 46, Issue 3, August 2023

DOI: https://doi.org/10.47836/pjtas.46.3.03

Keywords: Antibody titer, ELISA, HI, inactivated vaccine, LaSota, seroconversion

Published on: 30 August 2023

This research aims to evaluate the immunogenicity of different doses of HIPRAVIAR® BPL2 inactivated Newcastle disease virus (NDV) LaSota vaccine. Specific-pathogen-free day-old chicks were divided into 3 different groups, and each group was vaccinated subcutaneously with the vaccine dose of 0.1, 0.2, and 0.5 ml, respectively. Blood samples were collected to measure NDV-specific antibody titers using a hemagglutination inhibition (HI) test and enzyme-linked immunosorbent assay (ELISA). The HI result showed that birds vaccinated with 0.5 ml HIPRAVIAR® BPL2 vaccine showed an increased statistically significant antibody titer compared to the other doses. Similarly, the ELISA result corroborated the HI finding. No significant difference between the results was detected when the antibody titers were measured using two ELISA kits, Biocheck CK116, and CIVTEST® AVI NDV. The percentage antibody-positive test based on HI amongst the different days post-vaccination showed that all the birds were positive from 28 to 42 days following vaccination with HIPRAVIAR® BPL2 0.5 ml (group D), whereas the highest percentage of antibody positivity were 80% and 70% at 42 days post-vaccination with HIPRAVIAR® BPL2 0.1 ml (group B) and HIPRAVIAR® BPL2 0.2 ml (group C), respectively. In conclusion, besides the difference in seroconversion, all the vaccine doses used had important levels of seroconversion and positivity.

  • Alexander, D. J. (2000). Newcastle disease and other avian paramyxoviruses. Revue Scientifique et Technique, 19(2), 443–462. https://doi.org/10.20506/rst.19.2.1231

  • Alexander, D. J., & Jones, R. C. (2008). Paramyxoviridae. In M. Pattison, P. McMullin, J. M. Bradbury, & D. Alexander (Eds.), Poultry diseases (6th ed., pp. 294-316). Saunders Ltd. https://doi.org/10.1016/B978-0-7020-2862-5.50030-1

  • Abdurofi, I., Ismail, M. M., Kamal, H. A. W., & Gabdo, B. H. (2017). Economic analysis of broiler production in Peninsular Malaysia. International Food Research Journal, 24(2), 761.

  • Aldous, E. W., Mynn, J. K., Banks, J., & Alexander, D. J. (2003). A molecular epidemiological study of avian paramyxovirus type 1 (Newcastle disease virus) isolates by phylogenetic analysis of a partial nucleotide sequence of the fusion protein gene. Avian Pathology, 32(3), 239–256. https://doi.org/10.1080/030794503100009783

  • Beard, C. W., Hopkins, S. R., & Hammond, J. (1975). Preparation of Newcastle disease virus hemagglutination-inhibition test antigen. Avian Diseases, 19(4), 692–699.

  • Bello, M. B., Mahamud, S. N. A., Yusoff, K., Ideris, A., Hair-Bejo, M., Peeters, B., & Omar, A. R. (2020). Development of an effective and stable genotype-matched live attenuated Newcastle disease virus vaccine based on a novel naturally recombinant Malaysian isolate using reverse genetics. Vaccines, 8(2), 270. https://doi.org/10.3390/vaccines8020270

  • Brown, J., Resurreccion, R. S., & Dickson, T. G. (1990). The relationship between the hemagglutination-inhibition test and the enzyme-linked immunosorbent assay for the detection of antibody to Newcastle disease. Avian Diseases, 34(3), 585–587. https://doi.org/10.2307/1591248

  • Boursnell, M. E., Green, P. F., Campbell, J. I., Deuter, A., Peters, R. W., Tomley, F. M., Samson, A. C., Chambers, P., Emmerson, P. T., & Binns, M. M. (1990). Insertion of the fusion gene from Newcastle disease virus into a non-essential region in the terminal repeats of fowlpox virus and demonstration of protective immunity induced by the recombinant. Journal of General Virology, 71(3), 621–628. https://doi.org/10.1099/0022-1317-71-3-621

  • Chimeno, Z. S., Gómez, E., Carrillo, E., & Berinstein, A. (2008). Locally produced mucosal IgG in chickens immunized with conventional vaccines for Newcastle disease virus. Brazilian Journal of Medical and Biological Research, 41(4), 318–323. https://doi.org/10.1590/S0100-879X2008000400010

  • Czifra, G., Mészáros, J., Horváth, E., Moving, V., & Engström, B. E. (1998). Detection of NDV-specific antibodies and the level of protection provided by a single vaccination in young chickens. Avian Pathology, 27(6), 562–565. https://doi.org/10.1080/03079459808419384

  • Dimitrov, K. M., Abolnik, C., Afonso, C. L., Albina, E., Bahl, J., Berg, M., Braids, F. X., Brown, I.H., Choi, K. S., Diel, D. G., Durr, P. A., Ferreiraa, H. L., Furaso, A., Gil, P., Goujgoulova, G. V., Grund, C., Hicks, J., T, Wong, F. Y. K., & Diel, D. G. (2019). Updated unified phylogenetic classification system and revised nomenclature for Newcastle disease virus. Infection, Genetics and Evolution, 74, 103917. https://doi.org/10.1016/j.meegid.2019.103917

  • Diel, D. G., da Silva, L. H., Liu, H., Wang, Z., Miller, P. J., & Afonso, C. L. (2012). Genetic diversity of avian paramyxovirus type 1: proposal for a unified nomenclature and classification system of Newcastle disease virus genotypes. Infection, Genetics and Evolution, 12(8), 1770–1779. https://doi.org/10.1016/j.meegid.2012.07.012

  • Dimitrov, K. M., Afonso, C. L., Yu, Q., & Miller, P. J. (2017). Newcastle disease vaccines - A solved problem or a continuous challenge? Veterinary Microbiology, 206, 126–136. https://doi.org/10.1016/j.vetmic.2016.12.019

  • Gallili, G. E., & Ben-Nathan, D. (1998). Newcastle disease vaccines. Biotechnology Advances, 16(2), 343–366. https://doi.org/10.1016/s0734-9750(97)00081-5

  • Gergen, L., Cook, S., Ledesma, B., Cress, W., Higuchi, D., Counts, D., Cruz-Coy, J., Crouch, C., Davis, P., Tarpey I., & Morsey, M. (2019). A double recombinant herpes virus of turkeys for the protection of chickens against Newcastle, infectious laryngotracheitis and Marek’s diseases, Avian Pathology, 48(1), 45-56, https://doi.org/10.1080/03079457.2018.1546376

  • Hines, N. L. & Miller, C. L. (2012). Avian paramyxovirus serotype-1: A review of disease distribution, clinical symptoms, and laboratory diagnostics. Veterinary Medicine International, 2012, 708216. https://doi.org/10.1155/2012/708216

  • Igwe, A. O., Nnsewo, U. E., Eze, D. C., Abba, Y., & Okoye, J. O. A. (2019). Increased doses of La Sota vaccine increased Newcastle disease antibody response significantly in broiler chickens (Gallus gallus domesticus). Journal of Applied Animal Research, 47(1), 423–428. https://doi.org/10.1080/09712119.2019.1645675

  • International Committee on Taxonomy of Viruses. (2019, July 7). Virus Taxonomy. https://talk.ictvonline.org/taxonomy/.

  • Jindal, N., Chander, Y., Primus, A., Redig, P. T., & Goyal, S. M. (2010). Isolation and molecular characterization of Newcastle disease viruses from raptors. Avian Pathology, 39(6), 441– 445. https://doi.org/10.1080/03079457.2010.517249

  • Maas, R. A., Oei, H. L., Venema-Kemper, S., Koch, G., & Bongers, J. (1999). Dose-response effects of inactivated Newcastle disease vaccines: Influence of serologic assay, time after vaccination, and type of chickens. Avian Diseases, 43(4), 670–677. https://doi.org/10.2307/1592736

  • Mahamud, S. N., Bello, M. B., Ideris, A., & Omar, A. R. (2022). Efficacy of genotype-matched Newcastle disease virus vaccine formulated in carboxymethyl sago starch acid hydrogel in chickens vaccinated via different routes. Journal of Veterinary Science, 23(4), e25. https://doi.org/10.4142/jvs.21242

  • Mao, Q., Ma, S., Schrickel, P.L., Zhao, P., Wang, J., Zhang, Y., Li, S., & Wang, C.

  • (2022). Review detection of Newcastle disease virus. Frontier of Veterinary Sciences, 9:936251. https://doi.org/10.3389/fvets.2022.936251

  • Marangon, S., & Busani, L. (2007). The use of vaccination in poultry production. Revue Scientifique et Technique-Office International des Epizooties, 26(1), 265–274. https://doi.org/10.20506/RST.26.1.1742

  • Martinez, J. C. S., Chou, W. K., Berghman, L. R., & Carey, J. B. (2018). Evaluation of the effect of live LaSota Newcastle disease virus vaccine as primary immunization on immune development in broilers. Poultry Science, 97(2), 455–462. https://doi.org/10.3382/ps/pex339

  • Miller, P. J., King, D. J., Afonso, C. L., & Suarez, D. L. (2007). Antigenic differences among Newcastle disease virus strains of different genotypes used in vaccine formulation affect viral shedding after a virulent challenge. Vaccine, 25(41), 7238–7246. https://doi.org/10.1016/j.vaccine.2007.07.017

  • Miller, P. J., Estevez, C., Yu, Q., Suarez, D. L., & King, D. J. (2009). Comparison of viral shedding following vaccination with inactivated and live Newcastle disease vaccines formulated with wild-type and recombinant viruses. Avian Diseases, 53(1), 39-49.

  • Miller, P. J., Afonso, C. L., El Attrache, J., Dorsey, K. M., Courtney, S. C., Guo, Z., & Kapczynski, D. R. (2013). Effects of Newcastle disease virus vaccine antibodies on the shedding and transmission of challenge viruses. Developmental & Comparative Immunology, 41(4), 505-513. https://doi.org/10.1016/j.dci.2013.06.007

  • Miller, P. J., Haddas, R., Simanov, L., Lublin, A., Rehmani, S. F., Wajid, A., Bibi, T., Khan, T. A., Yaqub, T., Setiyaningsih, S., & Afonso, C. L. (2015). Identification of new sub-genotypes of virulent Newcastle disease virus with potential panzootic features. Infection, Genetics and Evolution, 29, 216–229. https://doi.org/10.1016/j.meegid.2014.10.032

  • Naguib, M. M., Höper, D., Elkady, M. F., Afifi, M. A., Erfan, A., Abozeid, H. H., Hasan, W. M., Arafa A. S., Shahein, M., Beer, M., Harder T. C., & Grund, C. (2022). Comparison of genomic and antigenic properties of Newcastle Disease virus genotypes II, XXI and VII from Egypt do not point to antigenic drift as selection marker. Transboundary and Emerging Diseases, 69(2), 849-863. https://doi.org/10.1111/tbed.14121

  • Nooruzzaman, M., Hossain, I., Begum, J. A., Moula, M., Khaled, S. A., Parvin, R., Chowdhury, E. H., Islam, M. R, Diel, D. G., & Dimitrov, K. M. (2022). The first report of a virulent Newcastle disease virus of genotype VII. 2 causing outbreaks in chickens in Bangladesh. Viruses, 14(12), 2627. https://doi.org/10.3390/v14122627

  • Samal, S. K. (2008). Paramyxoviruses of animals. In Encyclopedia of Virology (3rd ed., pp. 40–47). Academic Press. https://doi.org/10.1016/B978-012374410-4.00460-X

  • Shohaimi, S. A., Raus, R. A., Huai, O. G., Asmayatim, B. M., Nayan, N., & Yusuf, A. M. (2015). Sequence and phylogenetic analysis of Newcastle disease virus genotype VII isolated in Malaysia during 1999- 2012. Jurnal Teknologi, 77(25). https://doi.org/10.11113/jt.v77.6757

  • Suarez, D. L., Miller, P. J., Koch, G., Mundt, E., & Rautenschlein, S. (2020). Newcastle disease, other avian paramyxoviruses, and avian metapneumovirus infections. In D. E. Swayne, M. Boulianne, C. M. Logue, L. R. McDougald, V. Nair, D. L. Suarez, S. de Wit, T. Grimes, D. Johnson, M. Kromm, T. Y. Prajitno, I. Rubinoff, & G. Zavala (Eds.), Diseases of poultry (14th ed., pp. 109-166). John Wiley & Sons, Inc. https://doi.org/10.1002/9781119371199.ch3

  • World Organisation for Animal Health. (2012). Newcastle disease (infection with Newcastle disease virus). https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.03.14_NEWCASTLE_DIS.pdf

  • Tavakoli, A., Rezaei, F., Fatemi Nasab, G. S., Adjaminezhad-Fard, F., Noroozbabaei, Z., & Mokhtari-Azad, T. (2017). The comparison of sensitivity and specificity of ELISA-based microneutralization test with hemagglutination inhibition test to evaluate neutralizing antibody against influenza virus (H1N1). Iranian Journal of Public Health, 46(12), 1690–1696.

  • Snoeck, C. J., Owoade, A. A., Couacy-Hymann, E., Alkali, B. R., Okwen, M. P., Adeyanju, A. T., Komoyo, G. F., Nakouné, E., Le Faou, A., & Muller, C. P. (2013). High genetic diversity of Newcastle disease virus in poultry in West and Central Africa: cocirculation of genotype XIV and newly defined genotypes XVII and XVIII. Journal of Clinical Microbiology, 51(7), 2250–2260. https://doi.org/10.1128/JCM.00684-13

ISSN 1511-3701

e-ISSN 2231-8542

Article ID


Download Full Article PDF

Share this article

Related Articles