e-ISSN 2231-8542
ISSN 1511-3701
Bee-Hui Yeo, Shew-Fung Wong, Chin-Ping Tan, Yaya Rukayadi and Oi-Ming Lai
Pertanika Journal of Tropical Agricultural Science, Volume 46, Issue 3, August 2023
DOI: https://doi.org/10.47836/pjtas.46.3.12
Keywords: Edible bird’s nest, enzymatic hydrolysis, heat treatment, sialic acid
Published on: 30 August 2023
Edible bird’s nest (EBN) hydrolysate is widely used in EBN downstream products. This study aimed to optimize the process conditions (combination of heat treatment and enzymatic hydrolysis) to produce high-yield and high-quality EBN hydrolysate. The effects of four factors in the process were studied by response surface methodology. The experimental factors are EBN temperature during double boiling (DB), DB duration, enzymatic hydrolysis duration, and the ratio of EBN to water. The recovery (yield) and quality (sialic acid [SA], 2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid [ABTS], and 2,2-diphenyl-1-picrylhydrazyl [DPPH]) of the final product were used as response variables. The Pearson correlation coefficient showed that: EBN temperature during DB affected product recovery (p < 0.01) and ABTS (p < 0.01), DB Duration affected DPPH (p < 0.01), and the ratio of EBN to water affected product recovery (p < 0.01). The duration of enzymatic hydrolysis was not significantly correlated with any of the responses and least significant factors in the model. Two optimal conditions for the processes obtained from this study were yield (product recovery) and quality. This study also showed that EBN hydrolysate produced from EBN by-products could be used as a nutraceutical because of the antioxidant activity and high SA content.
Abidin, F. Z., Hui, C. K., Luan, N. S., Ramli, E. S. M., Hun, L. T., & Ghafar, N. A. (2011). Effects of edible bird’s nest (EBN) on cultured rabbit corneal keratocytes. BMC Complementary and Alternative Medicine, 11, 94. https://doi.org/10.1186/1472-6882-11-94
Albishtue, A. A., Yimer, N., Zakaria, M. Z. A., Haron, A. W., Babji, A. S., Abubakar, A. A., & Almhanawi, B. H. (2019). Effects of EBN on embryo implantation, plasma concentrations of reproductive hormones, and uterine expressions of genes of PCNA, steroids, growth factors and their receptors in rats. Theriogenology, 126, 310–319. https://doi.org/10.1016/j.theriogenology.2018.12.026
Amin, A. M., Din, K., & Chow, H. K. (2019). Optimization of enzymatic hydrolysis condition of edible bird’s nest using protamex to obtain maximum degree of hydrolysis. Asian Journal of Agriculture and Biology, 7(1), 1–9.
Amiza, M. A., Khuzma, D., Liew, P. S., Malihah, M. S., & Sarbon, N. M. (2019). Effect of heat treatment and enzymatic protein hydrolysis on the degree ofhydrolysis and physicochemical properties of edible bird’s nest. Journal of Food Science, 3(6), 664-677. https://doi.org/10.26656/FR.2017.3(6).149
Babji, A. S., Etty Syarmila, I. K., Nur ‘Aliah, D., Nurul Nadia, M., Hadi Akbar, D., Norrakiah, A. S., Ghassem, M., Najafian, L., & Salma, M. Y. (2018). Assessment on bioactive components of hydrolysed edible bird nest. International Food Research Journal, 25(5), 1936-1941.
Bang, T. H., Hanh, B. T., & Quoc, N. V. (2017). Studying factors affecting enzyme hydrolysis process of Khanh Hoa swiftlet. http://journalijiar.com/article/650/studying-factors-affecting-enzyme-hydrolysis-process-of-khanh-hoa-swiftlet-nest/
Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965–977. https://doi.org/10.1016/j.talanta.2008.05.019
Brightman, H. J. (1978). Optimization through experimentation: Applying response surface methodology. Decision Sciences, 9(3), 481–495. https://doi.org/10.1111/j.1540-5915.1978.tb00737.x
Cao, J., Xiong, N., Zhang, Y., Dai, Y., Wang, Y., Lu, L., & Jiang, L. (2022). Using RSM for optimum of optimum production of peptides from edible bird’s nest by-product and characterization of its antioxidant’s properties. Foods, 11(6), 859. https://doi.org/10.3390/foods11060859
Careena, S., Sani, D., Tan, S. N., Lim, C. W., Hassan, S., Norhafizah, M., Kirby, B. P., Ideris, A., Stanslas, J., Basri, H., & Lim, C. T. S. (2018). Effect of edible bird’s nest extract on lipopolysaccharide-induced impairment of learning and memory in Wistar rats. Evidence-Based Complementary and Alternative Medicine, 2018, 9318789. https://doi.org/10.1155/2018/9318789
Chong, P. K., Mun, S. L., Chang, L. S., Babji, A. S., & Lim, S. J. (2022). Fractionation of edible bird’s nest glycoprotein hydrolysates: Characterisation and antioxidative activities of the fractions. Food Science and Human Wellness, 11(4), 886–894. https://doi.org/10.1016/j.fshw.2022.03.015
Chua, K.-H., Lee, T.-H., Nagandran, K., Yahaya, N. H. M., Lee, C.-T., Tjih, E. T. T., & Aziz, R. A. (2013). Edible bird’s nest extract as a chondro-protective agent for human chondrocytes isolated from osteoarthritic knee: In vitro study. BMC Complementary and Alternative Medicine, 13, 19. https://doi.org/10.1186/1472-6882-13-19
Dai, Y., Cao, J., Wang, Y., Chen, Y., & Jiang, L. (2021). A comprehensive review of edible bird’s nest. Food Research International, 140, 109875. https://doi.org/10.1016/j.foodres.2020.109875
Dai, Y., Cao, J., Zhang, Y., He, F., & Jiang, L. (2022). Study on sialic acid binding state in stewed bird’s nest and optimization of enzymatic extraction of free and oligosaccharide-bound sialic acid. Journal of AOAC International, 105(2), 567–575. https://doi.org/10.1093/jaoacint/qsab096
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356. https://doi.org/10.1021/ac60111a017
Ee, K.-Y., Khoo, L.-Y., Ng, W.-J., Wong, F.-C., & Chai, T.-T. (2019). Effects of bromelain and trypsin hydrolysis on the phytochemical content, antioxidant activity, and antibacterial activity of roasted butterfly pea seeds. Processes, 7(8), 534. https://doi.org/10.3390/pr7080534
Fan, Q., Zeng, H., Zhang Y., Zheng B., & Lian J. (2020). Brewing type instant cubilose powder and preparation method thereof. https://patents.google.com/patent/CN112006276A/en?q=(%E7%87%95%E7%AA%9D)&oq=%E7%87%95%E7%AA%9D&sort=new&page=2
Haghani, A., Mehrbod, P., Safi, N., Aminuddin, N. A., Bahadoran, A., Omar, A. R., & Ideris, A. (2016). In vitro and in vivo mechanism of immunomodulatory and antiviral activity of Edible Bird’s Nest (EBN) against influenza A virus (IAV) infection. Journal of Ethnopharmacology, 185, 327–340. https://doi.org/10.1016/j.jep.2016.03.020
Hwang, E., Park, S., & Yang, J.-E. (2020). Anti-aging, anti-inflammatory, and wound-healing activities of edible bird’s nest in human skin keratinocytes and fibroblasts. Pharmacognosy Magazine, 16(69), 336-342. https://doi.org/10.4103/pm.pm_326_19
Hun, L. T., Wani, W. A., Tjih, E. T. T., Adnan, N. A., Ling, Y. L., & Aziz, R. A. (2015). Investigations into the physicochemical, biochemical and antibacterial properties of edible bird’s nest. Journal of Chemical and Pharmaceutical Research, 7(7), 228-247.
Jourdian, G. W., Dean, L., & Roseman, S. (1971). The sialic acids: XI. A periodate-resorcinol method for the quantitative estimation of free sialic acids and their glycosides. Journal of Biological Chemistry, 246(2), 430–435. https://doi.org/10.1016/S0021-9258(18)62508-6
Li J., Zou F., Chen Y., Fan Q., Huang C., & Guo P. (2020). Cubilose concentrated solution and preparation method and application thereof. https://patents.google.com/patent/CN112042935A/en?q=(%E7%87%95%E7%AA%9D)&oq=%E7%87%95%E7%AA%9D&sort=new&page=2
Lim, C. T. S., Norhafizah, M., Sani, D., Tan, S. N., Lim, C. W., Kirby, B. P., Ideris, A., & Stanslas, J. (2021). Edible bird nest protects the kidney from gentamicin induced acute tubular necrosis. Frontiers in Pharmacology, 12, 726005. https://www.frontiersin.org/articles/10.3389/fphar.2021.726005
Ling, J. W. A., Chang, L. S., Babji, A. S., & Lim, S. J. (2020). Recovery of value-added glycopeptides from edible bird’s nest (EBN) co-products: Enzymatic hydrolysis, physicochemical characteristics and bioactivity. Journal of the Science of Food and Agriculture, 100(13), 4714-4722. https://doi.org/10.1002/jsfa.10530
Matsukawa, N., Matsumoto, M., Bukawa, W., Chiji, H., Nakayama, K., Hara, H., & Tsukahara, T. (2011). Improvement of bone strength and dermal thickness due to dietary edible bird’s nest extract in ovariectomized rats. Bioscience, Biotechnology, and Biochemistry, 75(3), 590-592. https://doi.org/10.1271/bbb.100705
Nanda, R. F., Rini, B., Syukri, D., Thu, N. N. A., & Kasim, A. (2020). A review: Application of bromelain enzymes in animal food products. Andalasian International Journal of Agriculture and Natural Sciences, 1(1), 33-44. https://doi.org/10.25077/aijans.v1.i01.33-44.2020
Nasir, N. N. M., Ibrahim, R. M., Bakar, M. Z. A., Mahmud, R., & Razak, N. A. A. (2021). Characterization and extraction influence protein profiling of edible bird’s nest. Foods, 10(10), 2248. https://doi.org/10.3390/foods10102248
Ng, S. R., Noor, H. S. M., Ramachandran, R., Tan, H. Y., Ch’ng S.-E., Lee, S. C., Babji, A. S., & Lim, S. J. (2020). Recovery of glycopeptides by enzymatic hydrolysis of edible bird’s nest: The physicochemical characteristics and protein profile. Journal of Food Measurement and Characterization, 14, 2635–2645. https://doi.org/10.1007/s11694-020-00510-4
Noor, H. S. M., Babji, A. S., & Lim, S. J. (2018). Nutritional composition of different grades of edible bird’s nest and its enzymatic hydrolysis. In AIP Conference Proceedings (Vol. 1940, No. 1, p. 020088). AIP Publishing. https://doi.org/10.1063/1.5028003
Nurfatin, M. H., Etty Syarmila I. K, Nur ‘Aliah, D., Zalifah, M. K., Ayob, M. K, Babji, A. S., & Ayob, M. K. (2016). Effect of enzymatic hydrolysis on Angiotensin converting enzyme (ACE) inhibitory activity in swiftlet saliva. International Food Research Journal, 23(1), 141-146.
Ramachandran, R., Babji, A. S., & Wong, I. P. (2017). Effect of heating on antioxidant activity on edible bird nest. In International Seminar on Tropical Animal Production (pp. 380-386). Universitas Gadjah Mada Press. https://journal.ugm.ac.id/istapproceeding/article/view/29848
Xu, H., Zheng, L., Xie, Y., Zeng, H., Fan, Q., Zheng, B., & Zhang, Y. (2019). Identification and determination of glycoprotein of edible brid’s nest by nanocomposites based lateral flow immunoassay. Food Control, 102, 214–220. https://doi.org/10.1016/j.foodcont.2019.03.018
Yan, T. H., Lim, S. J., Babji, A. S., Rawi, M. H., & Sarbini, S. R. (2021). Enzymatic hydrolysis: Sialylated mucin (SiaMuc) glycoprotein of edible swiftlet’s nest (ESN) and its molecular weight distribution as bioactive ESN SiaMuc-glycopeptide hydrolysate. International Journal of Biological Macromolecules, 175, 422–431. https://doi.org/10.1016/j.ijbiomac.2021.02.007
Yan, T. H., Mun, S. L., Lee, J. L., Lim, S. J., Daud, N. A., Babji, A. S., & Sarbini, S. R. (2022). Bioactive sialylated-mucin (SiaMuc) glycopeptide produced from enzymatic hydrolysis of edible swiftlet’s nest (ESN): Degree of hydrolysis, nutritional bioavailability, and physicochemical characteristics. International Journal of Food Properties, 25(1), 252–277. https://doi.org/10.1080/10942912.2022.2029482
Yao, Y. (2017). A kind of formula of bird’s nest jelly and preparation method thereof. https://patents.google.com/patent/CN107302991A/en
Yew, M. Y., Koh, R. Y., Chye, S. M., Othman, I., Soga, T., Parhar, I., & Ng, K. Y. (2018). Edible bird’s nest improves motor behavior and protects dopaminergic neuron against oxidative and nitrosative stress in Parkinson’s disease mouse model. Journal of Functional Foods, 48, 576–585. https://doi.org/10.1016/j.jff.2018.07.058
ISSN 1511-3701
e-ISSN 2231-8542