e-ISSN 2231-8542
ISSN 1511-3701
Nur Isti’anah Ramli, Faridah Abas, Intan Safinar Ismail, Yaya Rukayadi and Shahidah Md Nor
Pertanika Journal of Tropical Agricultural Science, Volume 46, Issue 4, November 2023
DOI: https://doi.org/10.47836/pjtas.46.4.21
Keywords: Antioxidant activity, bacteria pigment, Methylobacterium sp., phenolic compound, pink pigmented facultative methylotrophs, toxicity
Published on: 27 November 2023
Pink-pigmented facultative methylotrophs bacteria are a plant’s surface inhabitant, especially at the leaf. They are known as Methylobacterium species. The antioxidant activity, phenolic compounds, and level of toxicity of this bacteria pigment have been studied. Recently, no previous research focused on the same bacterium found in Melicope lunu-ankenda (Gaertn.) T. G. Hartley, which is a component of the Malaysian ulam leaf. This study employed the 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric ion reducing antioxidant power (FRAP), and 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging assays, along with total phenolic content determination to assess the antioxidant activities of the methanolic and ethanolic pigment extract. Additionally, the consumption safety level of the pigment extract used brine shrimp lethality assay. From these findings, ethanolic pigment extract has a higher antioxidant capacity than methanolic extract. The DPPH half-maximal inhibitory concentration (IC50) value of methanolic pigment extract is higher than ethanolic extract (0.72 ± 0.04 mg/ml), but the IC50 value is vice versa for ABTS (4.59 ± 2.17 mg/ml). Furthermore, ethanolic extracts have a high FRAP assay value (1.09 ± 0.19 mg/mg of trolox equivalent at 0.78 mg/ml sample) and phenolic content (1.39 ± 0.07 mg/mg of gallic acid equivalent at 0.78 mg/ml sample) compared to methanolic pigment extracts. Fortunately, the methanolic and ethanolic pigment extract’s lethal concentration values (4.52 and 9.94 mg/ml) are considered safe for food application since their toxicity level is higher than 1 mg/ml.
Abarca-Vargas, R., Pena Malacara, C. F., & Petricevich, V. L. (2016). Characterization of chemical compounds with antioxidant and cytotoxic activities in Bougainvillea × buttiana Holttum and Standl, (var. Rose) extracts. Antioxidants, 5(4), 45. https://doi.org/10.3390/antiox5040045
Boronat, A., & Rodríguez-Concepción, M. (2015). Terpenoid biosynthesis in prokaryotes. In J. Schrader & J. Bohlmann (Eds.), Biotechnology of isoprenoids: Advances in biochemical engineering/biotechnology (Vol. 148, pp. 3–18). Springer. https://doi.org/10.1007/10_2014_285
Cerretani, L., & Bendini, A. (2010). Rapid assays to evaluate the antioxidant capacity of phenols in virgin olive oil. In V. R. Preedy & R. R. Watson (Eds.), Olives and olive oil in health and disease prevention (pp. 625–635). Academic Press. https://doi.org/10.1016/B978-0-12-374420-3.00067-X
Cheeseman, K. H., & Slater, T. F. (1993). An introduction to free radical biochemistry. British Medical Bulletin, 49(3), 481–493. https://doi.org/10.1093/oxfordjournals.bmb.a072625
Dekkers, J. C., van Doornen, L. J., & Kemper, H. C. (1996). The role of antioxidant vitamins and enzymes in the prevention of exercise-induced muscle damage. Sports Medicine, 21, 213–238. https://doi.org/10.2165/00007256-199621030-00005
Do, Q. D., Angkawijaya, A. E., Tran-Nguyen, P. L., Huynh, L. H., Soetaredjo, F. E., Ismadji, S., & Ju, Y.-H. (2014). Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. Journal of Food and Drug Analysis, 22(3), 296–302. https://doi.org/10.1016/j.jfda.2013.11.001
Dreyer, M. (2016). Adaption of two Methylobacterium strains isolated from rainwater to simulated stress factors in the atmosphere [Master’s thesis, Aarhus University]. Studerende. https://studerende.au.dk/fileadmin/bioscience/Uddannelse/Specialerapporter_og_abstracts/2016-03-18_Morten_Dreyer_Speciale.pdf
Dring, M. J. (2005). Stress resistance and disease resistance in seaweeds: The role of reactive oxygen metabolism. Advances in Botanical Research, 43, 175–207. https://doi.org/10.1016/S0065-2296(05)43004-9
Fridovich, I. (1986). Biological effects of the superoxide radical. Archives of Biochemistry and Biophysics, 247(1), 1–11. https://doi.org/10.1016/0003-9861(86)90526-6
Gil, M. I., Tomás-Barberán, F. A., Hess-Pierce, B., & Kader, A. A. (2002). Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from California. Journal of Agricultural and Food Chemistry, 50(17), 4976–4982. https://doi.org/10.1021/jf020136b
Green, P. N. (2014). Taxonomy of methylotrophic bacteria. In J. C. Murrell & H. Dalton (Eds.), Methane and methanol utilizers: Biotechnology handbooks (pp. 23–84). Springer. https://doi.org/10.1007/978-1-4899-2338-7_2
Hajam, Y. A., Rani, R., Ganie, S. Y., Sheikh, T. A., Javaid, D., Qadri, S. S., Pramodh, S., Alsulimani, A., Alkhanani, M. F., Harakeh, S., Hussain, A., Haque, S., & Reshi, M. S. (2022). Oxidative stress in human pathology and aging: Molecular mechanisms and perspectives. Cells, 11(3), 552. https://doi.org/10.3390/cells11030552
Halliwell, B., & Gutteridge, J. M. C. (2015). Free radicals in biology and medicine (5th ed.). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198717478.001.0001
Hamidi, M. R., Jovanova, B., & Panovska, T. K. (2014). Toxicоlogical evaluation of the plant products using brine shrimp (Artemia salina L.) model. Macedonian Pharmaceutical Bulletin, 60(1), 9–18. https://doi.org/10.33320/MACED.PHARM.BULL.2014.60.01.002
Hussin, M., Hamid, A. A., Abas, F., Ramli, N. S., Jaafar, A. H., Roowi, S., Majid, N. A., & Dek, M. S. P. (2019). NMR-based metabolomics profiling for radical scavenging and anti-aging properties of selected herbs. Molecules, 24(17), 3208. https://doi.org/10.3390/molecules24173208
Ismail, A., Azlan, A., Khoo, H.-E., Prasad, K.N., & Kong, K.-W. (2013). Antioxidant assays: Principles, methods and analyses. Universiti Putra Malaysia Press.
Lu, Y., & Yu, J. (2019). A well-established method for the rapid assessment of toxicity using Artemia spp. model. In H. E.-D. Saleh (Ed.), Assessment and management of radioactive and electronic wastes. IntechOpen. https://doi.org/10.5772/intechopen.85730
Madhaiyan, M. (2003). Molecular aspects, diversity and plant interaction of facultative methylotrophs occurring in tropical plants [Unpublished Doctoral dissertation]. Tamil Nadu Agricultural University.
Nagy, V., Agócs, A., Deli, J., Gulyás-Fekete, G., Illyés, T. Z., Kurtán, T., Turcsi, E., Béni, S., Dékány, M., Ballot, A., & Vasas, G. (2018). Carotenoid glycoside isolated and identified from cyanobacterium Cylindrospermopsis raciborskii. Journal of Food Composition and Analysis, 65, 6–10. https://doi.org/10.1016/j.jfca.2017.06.003
Nor, S. M., Ding, P., & Chun, T. J. (2023). Locule position and thawing duration affect postharvest quality of freshly cryo-frozen musang king durian fruit. Pertanika Journal of Tropical Agricultural Science, 46(2), 517-528. https://doi.org/10.47836/pjtas.46.2.09
Norouzitallab, P. (2015). Use of Artemia as model organism to study epigenetic control of phenotypes relevant for aquaculture species [Unpublished Doctoral dissertation]. Ghent University.
Pawar, R., Mohandass, C., Sivaperumal, E., Sabu, E., Rajasabapathy, R., & Jagtap, T. (2015). Epiphytic marine pigmented bacteria: A prospective source of natural antioxidants. Brazilian Journal of Microbiology, 46(1), 29–39. https://doi.org/10.1590/S1517-838246120130353
Photolo, M. M., Mavumengwana, V., Sitole, L., & Tlou, M. G. (2020). Antimicrobial and antioxidant properties of a bacterial endophyte, Methylobacterium radiotolerans MAMP 4754, isolated from Combretum erythrophyllum seeds. International Journal of Microbiology, 2020, 9483670. https://doi.org/10.1155/2020/9483670
Prieto, J. M. (2012). Procedure: preparation of DPPH radical, and antioxidant scavenging assay. DPPH Microplate Protocol, 1–3.
Rajabi, S., Ramazani, A., Hamidi, M., & Naji, T. (2015). Artemia salina as a model organism in toxicity assessment of nanoparticles. DARU Journal of Pharmaceutical Sciences, 23, 20. https://doi.org/10.1186/s40199-015-0105-x
Ramli, S. (2018). Antimicrobial activity, phytochemical and toxicity analyses of salam [Syzygium polyanthum (Wight) Walp.] leaf extract and its application in food [Unpublished Doctoral dissertation]. Universiti Putra Malaysia.
Ríos, D. L. P., & Gajardo, G. (2004). The brine shrimp Artemia (Crustacea, Anostraca): A model organism to evaluate management policies in aquatic resources. Revista Chilena de Historia Natural, 77(1), 3–4. https://doi.org/10.4067/S0716-078X2004000100001
Safafar, H., Van Wagenen, J., Møller, P., & Jacobsen, C. (2015). Carotenoids, phenolic compounds and tocopherols contribute to the antioxidative properties of some microalgae species grown on industrial wastewater. Marine Drugs, 13(12), 7339–7356. https://doi.org/10.3390/md13127069
Sahgal, G., Ramanathan, S., Sasidharan, S., Mordi, M. N., Ismail, S., & Mansor, S. M. (2010). Brine shrimp lethality and acute oral toxicity studies on Swietenia mahagoni (Linn.) Jacq. seed methanolic extract. Pharmacognosy Research, 2(4), 215-220. https://doi.org/10.4103/0974-8490.69107
Sahib, N. G., Hamid, A. A., Saari, N., Abas, F., Dek, M. S. P., & Rahim, M. (2012). Anti-pancreatic lipase and antioxidant activity of selected tropical herbs. International Journal of Food Properties, 15(3), 569–578. https://doi.org/10.1080/10942912.2010.494754
Sanders, J. M. (2008). Time post-hatch caloric value of Artemia salina. https://digitalcommons.uri.edu/cgi/viewcontent.cgi?article=1085&context=srhonorsprog
Santos, A. L., Moreirinha, C., Lopes, D., Esteves, A. C., Henriques, I., Almeida, A., Domingues, M. R. M., Delgadillo, I., Correia, A., & Cunha, A. (2013). Effects of UV radiation on the lipids and proteins of bacteria studied by mid-infrared spectroscopy. Environmental Science and Technology, 47(12), 6306-6315. https://doi.org/10.1021/es400660g
Singh, C. B., Devi, M. C., Thokchom, D. S., Sengupta, M., & Singh, A. K. (2015). Phytochemical screening, estimation of total phenols, total flavonoids and determination of antioxidant activity in the methanol extract of Dendrobium denudans D. Don stems. Journal of Pharmacognosy and Phytochemistry, 4(4), 6-11.
Stepnowski, P., Blotevogel, K. H., & Jastorff, B. (2004). Extraction of carotenoid produced during methanol waste biodegradation. International Biodeterioration and Biodegradation, 53(2), 127–132. https://doi.org/10.1016/j.ibiod.2003.11.001
Syahmi, A. R. M., Vijayarathna, S., Sasidharan, S., Latha, L. Y., Kwan, Y. P., Lau, Y. L., Shin, L. N., & Chen, Y. (2010). Acute oral toxicity and brine shrimp lethality of Elaeis guineensis Jacq., (oil palm leaf) methanol extract. Molecules, 15(11), 8111–8121. https://doi.org/10.3390/molecules15118111
Torres, L. G., Velasquez, A., & Brito-Arias, M. A. (2011). Ca-alginate spheres behavior in presence of some solvents and water-solvent mixtures. Advances in Bioscience and Biotechnology, 2, 8–12. https://doi.org/10.4236/abb.2011.21002
U. S. Environmental Protection Agency. (2002). Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms (5th ed.). US EPA. https://www.epa.gov/sites/default/files/2015-08/documents/acute-freshwater-and-marine-wet-manual_2002.pdf
Verma, B., Hucl, P., & Chibbar, R. N. (2009). Phenolic acid composition and antioxidant capacity of acid and alkali hydrolysed wheat bran fractions. Food Chemistry, 116(4), 947–954. https://doi.org/10.1016/j.foodchem.2009.03.060
Waghulde, S., Kale, M. K., & Patil, V. (2019). Brine shrimp lethality assay of the aqueous and ethanolic extracts of the selected species of medicinal plants. Proceedings, 41(1), 47. https://doi.org/10.3390/ecsoc-23-06703
Wu, C. (2014). An important player in brine shrimp lethality bioassay: The solvent. Journal of Advanced Pharmaceutical Technology and Research, 5(1), 57-58.
Yu, J., & Lu, Y. (2018). Artemia spp. Model - A well-established method for rapidly assessing the toxicity on an environmental perspective. Medical Research Archives, 6(2). https://doi.org/10.5772/intechopen.85730
Zeb, A. (2020). Concept, mechanism, and applications of phenolic antioxidants in foods. Journal of Food Biochemistry, 44(9), e13394. https://doi.org/10.1111/jfbc.13394
Zullaikah, S., Jessinia, M. C. P., Yasmin, M., Rachimoellah, M., & Wu, D. W. (2019). Lipids extraction from wet and unbroken microalgae Chlorella vulgaris using subcritical water. Materials Science Forum, 964, 103–108. https://doi.org/10.4028/www.scientific.net/MSF.964.103
ISSN 1511-3701
e-ISSN 2231-8542