PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 47 (2) May. 2024 / JTAS-2886-2023

 

Effect of Preharvest Treatment Using Jasmonic Acid and Methyl Jasmonate on the Physicochemical Properties and Antioxidant Activities of Red-fleshed Dragon Fruit (Hylocereus polyrhizus L.)

Norfarzana Hamzah, Nurul Shazini Ramli, Iffah Haifaa Mat Deris, Christopher Moses and Ezzat Mohamad Azman

Pertanika Journal of Tropical Agricultural Science, Volume 47, Issue 2, May 2024

DOI: https://doi.org/10.47836/pjtas.47.2.08

Keywords: Betacyanins, fruit preservation, pitaya, plant growth regulator, plant hormone, shelf life extension, sustainable agriculture

Published on: 30 May 2024

This study investigated the effect of exogenous plant growth regulators (PGR), namely jasmonic acid (JA) and methyl jasmonate (MeJA), on the physicochemical properties of flesh and peels of red-fleshed dragon fruit (Hylocereus polyrhizus). The fruit was sprayed with 100 and 1,000 ppm of JA and MeJA at 15 and 22 days of anthesis and harvested after 35 days. Then, the flesh and peels were analyzed for total soluble solids (TSS), total betacyanins, betanin, total phenolics (TP), total flavonoids (TF), and color characteristics. The fruit peels contained significantly higher (p<0.05) TP and antioxidant activities compared to flesh. No significant difference was detected between the variables in the peels, except for significantly higher (p<0.05) of total betacyanins (~295.6 and ~299.9 mg/100 g) and TP (~614.1 and 566.1 mg GAE/100 g) were recorded in control and 100 ppm MeJA, respectively. In the flesh, 1,000 ppm MeJA-treated fruit possessed the highest total betacyanins (~139.2 mg/100 g), betanin (~356.0 mg/g), TP (~244.9 mg GAE/100 g), TF (~329.0 mg CE/100 g), Trolox equivalent antioxidant capacity (TEAC) (63.2 µmol TE/g) and reducing power (~21.5 µmol TE/g). Overall, 1,000 ppm MeJA was more effective in enhancing the accumulation of bioactive compounds and antioxidant activities in the flesh of red-fleshed dragon fruit compared to other PGR treatments.

  • Abirami, K., Swain, S., Baskaran, V., Venkatesan, K., Sakthivel, K., & Bommayasamy, N. (2021). Distinguishing three dragon fruit (Hylocereus spp.) species grown in Andaman and Nicobar Islands of India using morphological, biochemical and molecular traits. Scientific Reports, 11, 2894. https://doi.org/10.1038/s41598-021-81682-x

  • Attar, Ş. H., Gündeşli, M. A., Urün, I., Kafkas, S., Kafkas, N. E., Ercisli, S., Ge, C., MIcek, J., & Adamkova, A. (2022). Nutritional analysis of red-purple and white-fleshed pitaya (Hylocereus) species. Molecules, 27(3), 808. https://doi.org/10.3390/molecules27030808

  • Azman, E. M., Nor, N. D. M., Charalampopoulos, D., & Chatzifragkou, A. (2022). Effect of acidified water on phenolic profile and antioxidant activity of dried blackcurrant (Ribes nigrum L.) pomace extracts. LWT, 154, 112733. https://doi.org/10.1016/j.lwt.2021.112733

  • Baek, M. W., Choi, H. R., Jae, L. Y., Kang, H.-M., Lee, O.-H., Jeong, C. S., & Tilahun, S. (2021). Preharvest treatment of methyl jasmonate and salicylic acid increase the yield, antioxidant activity and GABA content of tomato. Agronomy, 11(11), 2293. https://doi.org/10.3390/agronomy11112293

  • Batista-Silva, W., Nascimento, V. L., Medeiros, D. B., Nunes-Nesi, A., Ribeiro, D. M., Zsögön, A., & Araújo, W. L. (2018). Modifications in organic acid profiles during fruit development and ripening: Correlation or causation? Frontiers in Plant Science, 9, 1689. https://doi.org/10.3389/fpls.2018.01689

  • Calva-Estrada, S. J., Jiménez-Fernández, M., & Lugo-Cervantes, E. (2022). Betalains and their applications in food: The current state of processing, stability and future opportunities in the industry. Food Chemistry: Molecular Sciences, 4, 100089. https://doi.org/10.1016/j.fochms.2022.100089

  • Chaves, N., Santiago, A., & Alías, J. C. (2020). Quantification of the antioxidant activity of plant extracts: Analysis of sensitivity and hierarchization based on the method used. Antioxidants, 9(1), 76. https://doi.org/10.3390/antiox9010076

  • Chen, Z., Zhong, B., Barrow, C. J., Dunshea, F. R., & Suleria, H. A. R. (2021). Identification of phenolic compounds in Australian grown dragon fruits by LC-ESI-QTOF-MS/MS and determination of their antioxidant potential. Arabian Journal of Chemistry, 14(6), 103151. https://doi.org/10.1016/j.arabjc.2021.103151

  • Cheok, A., Xu, Y., Zhang, Z., Caton, P. W., & Rodriguez-Mateos, A. (2022). Betalain-rich dragon fruit (pitaya) consumption improves vascular function in men and women: A double-blind, randomized controlled crossover trial. The American Journal of Clinical Nutrition, 115(5), 1418-1431. https://doi.org/10.1093/ajcn/nqab410

  • Ghasemzadeh, A., Talei, D., Jaafar, H. Z. E., Juraimi, A. S., Mohamed, M. T. M., Puteh, A., & Halim, M. R. A. (2016). Plant-growth regulators alter phytochemical constituents and pharmaceutical quality in sweet potato (Ipomoea batatas L.). BMC Complementary and Alternative Medicine, 16, 152. https://doi.org/10.1186/s12906-016-1113-1

  • Gupta, V., Meena, N. K., Sharma, Y. K., & Choudhary, K. (2023). Comparative study of different polysaccharide‐based edible coatings on physicochemical attributes and bioactive compounds of mango cv. Dashehari fruits. eFood, 4(1), e55. https://doi.org/10.1002/efd2.55

  • Halimfanezi, L., & Asra, R. R. (2020). A review: Analysis of betacyanin levels in various natural products. Asian Journal of Pharmaceutical Research and Development, 8(5), 88-95. https://doi.org/10.22270/ajprd.v8i5.846

  • Hossain, F. M., Numan, S. M. N., & Akhtar, S. (2021). Cultivation, nutritional value, and health benefits of dragon fruit (Hylocereus spp.): A review. International Journal of Horticultural Science and Technology, 8(3), 259-269. https://doi.org/10.22059/ijhst.2021.311550.400

  • Hu, W., Sarengaowa., Guan, Y., & Feng, K. (2022). Biosynthesis of phenolic compounds and antioxidant activity in fresh-cut fruits and vegetables. Frontiers in Microbiology, 13, 906069. https://doi.org/10.3389/fmicb.2022.906069

  • Huang, Y., Brennan, M. A., Kasapis, S., Richardson, S. J., & Brennan, C. S. (2021). Maturation process, nutritional profile, bioactivities and utilisation in food products of red pitaya fruits: A review. Foods, 10(11), 2862. https://doi.org/10.3390/foods10112862

  • Jalgaonkar, K., Mahawar, M. K., Bibwe, B., & Kannaujia, P. (2022). Postharvest profile, processing and waste utilization of dragon fruit (Hylocereus spp.): A review. Food Reviews International, 38(4), 733-759. https://doi.org/10.1080/87559129.2020.1742152

  • Khan, N., Bano, A. M. D., & Babar, A. (2020). Impacts of plant growth promoters and plant growth regulators on rainfed agriculture. PLOS One, 15(4), e0231426. https://doi.org/10.1371/journal.pone.0231426

  • Khoo, H. E., He, X., Tang, Y., Li, Z., Li, C., Zeng, Y., Tang, J., & Sun, J. (2022). Betacyanins and anthocyanins in pulp and peel of red pitaya (Hylocereus polyrhizus cv. Jindu), inhibition of oxidative stress, lipid reducing, and cytotoxic effects. Frontiers in Nutrition, 9, 894438. https://doi.org/10.3389%2Ffnut.2022.894438

  • Le, N. L. (2022). Functional compounds in dragon fruit peels and their potential health benefits: A review. International Journal of Food Science and Technology, 57(5), 2571-2580. https://doi.org/10.1111/ijfs.15111

  • Li, X., Li, M., Wang, J., Wang, L., Han, C., Jin, P., & Zheng, Y. (2018). Methyl jasmonate enhances wound-induced phenolic accumulation in pitaya fruit by regulating sugar content and energy status. Postharvest Biology and Technology, 137, 106-112. https://doi.org/10.1016/j.postharvbio.2017.11.016

  • Lu, W., Shi, Y., Wang, R., Su, D., Tang, M., Liu, Y., & Li, Z. (2021). Antioxidant activity and healthy benefits of natural pigments in fruits: A review. International Journal of Molecular Sciences, 22(9), 4945. https://doi.org/10.3390/ijms22094945

  • Meng, X., Han, J., Wang, Q., & Tian, S. (2009). Changes in physiology and quality of peach fruits treated by methyl jasmonate under low temperature stress. Food Chemistry, 114(3), 1028-1035. https://doi.org/10.1016/j.foodchem.2008.09.109

  • Miguel, M. G. (2018). Betalains in some species of the Amaranthaceae family: A review. Antioxidants, 7(4), 53. https://doi.org/10.3390/antiox7040053

  • Mukherjee, A., Gaurav, A. K., Singh, S., Yadav, S., Bhowmick, S., Abeysinghe, S., & Verma, J. P. (2022). The bioactive potential of phytohormones: A review. Biotechnology Reports, 35, e00748. https://doi.org/10.1016/j.btre.2022.e00748

  • Mustafa, M. A., Ali, A., Seymour, G., & Tucker, G. (2018). Treatment of dragonfruit (Hylocereus polyrhizus) with salicylic acid and methyl jasmonate improves postharvest physico-chemical properties and antioxidant activity during cold storage. Scientia Horticulturae, 231, 89-96. https://doi.org/10.1016/j.scienta.2017.09.041

  • Naderi, N., Ghazali, H. M., Hussin, A. S. M., Amid, M., & Manap, M. Y. A. (2012). Characterization and quantification of dragon fruit (Hylocereus polyrhizus) betacyanin pigments extracted by two procedures. Pertanika Journal of Tropical Agricultural Science, 35(1), 33-40.

  • Nawawi, N. I. M., Ijod, G., Abas, F., Ramli, N. S., Adzahan, N. M., & Azman, E. M. (2023). Influence of different drying methods on anthocyanins composition and antioxidant activities of mangosteen (Garcinia mangostana L.) pericarps and LC-MS analysis of the active extract. Foods 12(12), 2351. https://doi.org/10.3390/foods12122351

  • Nguyen, H. T., Boonyaritthongchai, P., Buanong, M., Supapvanich, S., & Wongs-Aree, C. (2021). Chitosan-and κ-carrageenan-based composite coating on dragon fruit (Hylocereus undatus) pretreated with plant growth regulators maintains bract chlorophyll and fruit edibility. Scientia Horticulturae, 281, 109916. https://doi.org/10.1016/j.scienta.2021.109916

  • Nishikito, D. F., Borges, A. C. A., Laurindo, L. F., Otoboni, A. M. M. B., Direito, R., de Alvares Goulart, R., Nicolau, C. C., Fiorini, A. M. R., Sinatora, R. V., & Barbalho, S. M. (2023). Anti-inflammatory, antioxidant, and other health effects of dragon fruit and potential delivery systems for its bioactive compounds. Pharmaceutics, 15(1), 159. https://doi.org/10.3390/pharmaceutics15010159

  • Ordoñez Trejo, E. J. O., Brizzolara, S., Cardillo, V., Ruperti, B., Bonghi, C., & Tonutti, P. (2023). The impact of PGRs applied in the field on the postharvest behavior of fruit crops. Scientia Horticulturae, 318, 112103. https://doi.org/10.1016/j.scienta.2023.112103

  • Öztürk, B., Altuntas, E., Yildiz, K., Ozkan, Y., & Saracoglu, O. (2013). Effect of methyl jasmonate treatments on the bioactive compounds and physicochemical quality of’ ‘Fuji’ apples. Ciencia e Investigación Agraria, 40(1), 201-211. https://doi.org/10.4067/s0718-16202013000100018

  • Paśko, P., Galanty, A., Zagrodzki, P., Ku, Y. G., Luksirikul, P., Weisz, M., & Gorinstein, S. (2021). Bioactivity and cytotoxicity of different species of pitaya fruits – A comparative study with advanced chemometric analysis. Food Bioscience, 40, 100888. https://doi.org/10.1016/j.fbio.2021.100888

  • Paśko, P., Galanty, A., Zagrodzki, P., Luksirikul, P., Barasch, D., Nemirovski, A., & Gorinstein, S. (2021). Dragon fruits as a reservoir of natural polyphenolics with chemopreventive properties. Molecules, 26(8), 2158. https://doi.org/10.3390/molecules26082158

  • Ramli, N. S., Ismail, P., & Rahmat, A. (2014). Influence of conventional and ultrasonic-assisted extraction on phenolic contents, betacyanin contents, and antioxidant capacity of red dragon fruit (Hylocereus polyrhizus). The Scientific World Journal, 2014, 964731. https://doi.org/10.1155/2014/964731

  • Ren, Y., Yang, J., Lu, B., Jiang, Y., Chen, H., Hong, Y., Wu, B., & Miao, Y. (2017). Structure of pigment metabolic pathways and their contributions to white tepal color formation of Chinese Narcissus tazetta var. chinensis cv Jinzhanyintai. International Journal of Molecular Sciences, 18(9), 1923. https://doi.org/10.3390/ijms18091923

  • Ruan, J., Zhou, Y., Zhou, M., Yan, J., Khurshid, M., Weng, W., Cheng, J., & Zhang, K. (2019). Jasmonic acid signaling pathway in plants. International Journal of Molecular Sciences, 20(10), 2479. https://doi.org/10.3390/ijms20102479

  • Sadowska-Bartosz, I., & Bartosz, G. (2021). Biological properties and applications of betalains. Molecules, 26(9), 2520. https://doi.org/10.3390/molecules26092520

  • Saenjum, C., Pattananandecha, T., & Nakagawa, K. (2021). Antioxidative and anti-inflammatory phytochemicals and related stable paramagnetic species in different parts of dragon fruit. Molecules, 26(12), 3565. https://doi.org/10.3390/molecules26123565

  • Senevirathna, S. S. J., Ramli, N. S., Azman, E. M., Juhari, N. H., & Karim, R. (2021). Optimization of the drum drying parameters and citric acid level to produce purple sweet potato (Ipomoea batatas L.) powder using response surface methodology. Foods, 10(6), 1378. https://doi.org/10.3390/foods10061378

  • Taki-Nakano, N., Ohzeki, H., Kotera, J., & Ohta, H. (2014). Cytoprotective effects of 12-oxo phytodienoic acid, a plant-derived oxylipin jasmonate, on oxidative stress-induced toxicity in human neuroblastoma SH-SY5Y cells. Biochimica et Biophysica Acta - General Subjects, 1840(12), 3413-3422. https://doi.org/10.1016/j.bbagen.2014.09.003

  • Wang, H., Wu, Y., Yu, R., Wu, C., Fan, G., & Li, T. (2019). Effects of postharvest application of methyl jasmonate on physicochemical characteristics and antioxidant system of the blueberry fruit. Scientia Horticulturae, 258, 108785. https://doi.org/10.1016/j.scienta.2019.108785

  • Wang, S. Y., Bowman, L., & Ding, M. (2008). Methyl jasmonate enhances antioxidant activity and flavonoid content in blackberries (Rubus sp.) and promotes antiproliferation of human cancer cells. Food Chemistry, 107(3), 1261-1269. https://doi.org/10.1016/j.foodchem.2007.09.065

  • Wasternack, C., & Strnad, M. (2018). Jasmonates: News on occurrence, biosynthesis, metabolism and action of an ancient group of signaling compounds. International Journal of Molecular Sciences, 19(9), 2539. https://doi.org/10.3390/ijms19092539

  • Wei, J., Wen, X., & Tang, L. (2017). Effect of methyl jasmonic acid on peach fruit ripening progress. Scientia Horticulturae, 220, 206-213. https://doi.org/10.1016/j.scienta.2017.03.004

  • Wrolstad, R. E., & Smith, D. E. (2017). Color analysis. In S. S. Nielsen (Ed.), Food analysis (pp. 545-555). Springer. https://doi.org/10.1007/978-3-319-45776-5_31

  • Wu, Y., Xu, J., He, Y., Shi, M., Han, X., Li, W., Zhang, X., & Wen, X. (2019). Metabolic profiling of pitaya (Hylocereus polyrhizus) during fruit development and maturation. Molecules, 24(6), 1114. https://doi.org/10.3390/molecules24061114

  • Yadav, V., Wang, Z., Wei, C., Amo, A., Ahmed, B., Yang, X., & Zhang, X. (2020). Phenylpropanoid pathway engineering: An emerging approach towards plant defense. Pathogens, 9(4), 312. https://doi.org/10.3390/pathogens9040312

  • Zitha, E. Z. M., Magalhães, D. S., do Lago, R. C., Carvalho, E. E. N., Pasqual, M., & Boas, E. V. D. B. V. (2022). Changes in the bioactive compounds and antioxidant activity in red-fleshed dragon fruit during its development. Scientia Horticulturae, 291, 110611. https://doi.org/10.1016/j.scienta.2021.110611

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JTAS-2886-2023

Download Full Article PDF

Share this article

Related Articles