e-ISSN 2231-8542
ISSN 1511-3701
Norfarzana Hamzah, Nurul Shazini Ramli, Iffah Haifaa Mat Deris, Christopher Moses and Ezzat Mohamad Azman
Pertanika Journal of Tropical Agricultural Science, Volume 47, Issue 2, May 2024
DOI: https://doi.org/10.47836/pjtas.47.2.08
Keywords: Betacyanins, fruit preservation, pitaya, plant growth regulator, plant hormone, shelf life extension, sustainable agriculture
Published on: 30 May 2024
This study investigated the effect of exogenous plant growth regulators (PGR), namely jasmonic acid (JA) and methyl jasmonate (MeJA), on the physicochemical properties of flesh and peels of red-fleshed dragon fruit (Hylocereus polyrhizus). The fruit was sprayed with 100 and 1,000 ppm of JA and MeJA at 15 and 22 days of anthesis and harvested after 35 days. Then, the flesh and peels were analyzed for total soluble solids (TSS), total betacyanins, betanin, total phenolics (TP), total flavonoids (TF), and color characteristics. The fruit peels contained significantly higher (p<0.05) TP and antioxidant activities compared to flesh. No significant difference was detected between the variables in the peels, except for significantly higher (p<0.05) of total betacyanins (~295.6 and ~299.9 mg/100 g) and TP (~614.1 and 566.1 mg GAE/100 g) were recorded in control and 100 ppm MeJA, respectively. In the flesh, 1,000 ppm MeJA-treated fruit possessed the highest total betacyanins (~139.2 mg/100 g), betanin (~356.0 mg/g), TP (~244.9 mg GAE/100 g), TF (~329.0 mg CE/100 g), Trolox equivalent antioxidant capacity (TEAC) (63.2 µmol TE/g) and reducing power (~21.5 µmol TE/g). Overall, 1,000 ppm MeJA was more effective in enhancing the accumulation of bioactive compounds and antioxidant activities in the flesh of red-fleshed dragon fruit compared to other PGR treatments.
Abirami, K., Swain, S., Baskaran, V., Venkatesan, K., Sakthivel, K., & Bommayasamy, N. (2021). Distinguishing three dragon fruit (Hylocereus spp.) species grown in Andaman and Nicobar Islands of India using morphological, biochemical and molecular traits. Scientific Reports, 11, 2894. https://doi.org/10.1038/s41598-021-81682-x
Attar, Ş. H., Gündeşli, M. A., Urün, I., Kafkas, S., Kafkas, N. E., Ercisli, S., Ge, C., MIcek, J., & Adamkova, A. (2022). Nutritional analysis of red-purple and white-fleshed pitaya (Hylocereus) species. Molecules, 27(3), 808. https://doi.org/10.3390/molecules27030808
Azman, E. M., Nor, N. D. M., Charalampopoulos, D., & Chatzifragkou, A. (2022). Effect of acidified water on phenolic profile and antioxidant activity of dried blackcurrant (Ribes nigrum L.) pomace extracts. LWT, 154, 112733. https://doi.org/10.1016/j.lwt.2021.112733
Baek, M. W., Choi, H. R., Jae, L. Y., Kang, H.-M., Lee, O.-H., Jeong, C. S., & Tilahun, S. (2021). Preharvest treatment of methyl jasmonate and salicylic acid increase the yield, antioxidant activity and GABA content of tomato. Agronomy, 11(11), 2293. https://doi.org/10.3390/agronomy11112293
Batista-Silva, W., Nascimento, V. L., Medeiros, D. B., Nunes-Nesi, A., Ribeiro, D. M., Zsögön, A., & Araújo, W. L. (2018). Modifications in organic acid profiles during fruit development and ripening: Correlation or causation? Frontiers in Plant Science, 9, 1689. https://doi.org/10.3389/fpls.2018.01689
Calva-Estrada, S. J., Jiménez-Fernández, M., & Lugo-Cervantes, E. (2022). Betalains and their applications in food: The current state of processing, stability and future opportunities in the industry. Food Chemistry: Molecular Sciences, 4, 100089. https://doi.org/10.1016/j.fochms.2022.100089
Chaves, N., Santiago, A., & Alías, J. C. (2020). Quantification of the antioxidant activity of plant extracts: Analysis of sensitivity and hierarchization based on the method used. Antioxidants, 9(1), 76. https://doi.org/10.3390/antiox9010076
Chen, Z., Zhong, B., Barrow, C. J., Dunshea, F. R., & Suleria, H. A. R. (2021). Identification of phenolic compounds in Australian grown dragon fruits by LC-ESI-QTOF-MS/MS and determination of their antioxidant potential. Arabian Journal of Chemistry, 14(6), 103151. https://doi.org/10.1016/j.arabjc.2021.103151
Cheok, A., Xu, Y., Zhang, Z., Caton, P. W., & Rodriguez-Mateos, A. (2022). Betalain-rich dragon fruit (pitaya) consumption improves vascular function in men and women: A double-blind, randomized controlled crossover trial. The American Journal of Clinical Nutrition, 115(5), 1418-1431. https://doi.org/10.1093/ajcn/nqab410
Ghasemzadeh, A., Talei, D., Jaafar, H. Z. E., Juraimi, A. S., Mohamed, M. T. M., Puteh, A., & Halim, M. R. A. (2016). Plant-growth regulators alter phytochemical constituents and pharmaceutical quality in sweet potato (Ipomoea batatas L.). BMC Complementary and Alternative Medicine, 16, 152. https://doi.org/10.1186/s12906-016-1113-1
Gupta, V., Meena, N. K., Sharma, Y. K., & Choudhary, K. (2023). Comparative study of different polysaccharide‐based edible coatings on physicochemical attributes and bioactive compounds of mango cv. Dashehari fruits. eFood, 4(1), e55. https://doi.org/10.1002/efd2.55
Halimfanezi, L., & Asra, R. R. (2020). A review: Analysis of betacyanin levels in various natural products. Asian Journal of Pharmaceutical Research and Development, 8(5), 88-95. https://doi.org/10.22270/ajprd.v8i5.846
Hossain, F. M., Numan, S. M. N., & Akhtar, S. (2021). Cultivation, nutritional value, and health benefits of dragon fruit (Hylocereus spp.): A review. International Journal of Horticultural Science and Technology, 8(3), 259-269. https://doi.org/10.22059/ijhst.2021.311550.400
Hu, W., Sarengaowa., Guan, Y., & Feng, K. (2022). Biosynthesis of phenolic compounds and antioxidant activity in fresh-cut fruits and vegetables. Frontiers in Microbiology, 13, 906069. https://doi.org/10.3389/fmicb.2022.906069
Huang, Y., Brennan, M. A., Kasapis, S., Richardson, S. J., & Brennan, C. S. (2021). Maturation process, nutritional profile, bioactivities and utilisation in food products of red pitaya fruits: A review. Foods, 10(11), 2862. https://doi.org/10.3390/foods10112862
Jalgaonkar, K., Mahawar, M. K., Bibwe, B., & Kannaujia, P. (2022). Postharvest profile, processing and waste utilization of dragon fruit (Hylocereus spp.): A review. Food Reviews International, 38(4), 733-759. https://doi.org/10.1080/87559129.2020.1742152
Khan, N., Bano, A. M. D., & Babar, A. (2020). Impacts of plant growth promoters and plant growth regulators on rainfed agriculture. PLOS One, 15(4), e0231426. https://doi.org/10.1371/journal.pone.0231426
Khoo, H. E., He, X., Tang, Y., Li, Z., Li, C., Zeng, Y., Tang, J., & Sun, J. (2022). Betacyanins and anthocyanins in pulp and peel of red pitaya (Hylocereus polyrhizus cv. Jindu), inhibition of oxidative stress, lipid reducing, and cytotoxic effects. Frontiers in Nutrition, 9, 894438. https://doi.org/10.3389%2Ffnut.2022.894438
Le, N. L. (2022). Functional compounds in dragon fruit peels and their potential health benefits: A review. International Journal of Food Science and Technology, 57(5), 2571-2580. https://doi.org/10.1111/ijfs.15111
Li, X., Li, M., Wang, J., Wang, L., Han, C., Jin, P., & Zheng, Y. (2018). Methyl jasmonate enhances wound-induced phenolic accumulation in pitaya fruit by regulating sugar content and energy status. Postharvest Biology and Technology, 137, 106-112. https://doi.org/10.1016/j.postharvbio.2017.11.016
Lu, W., Shi, Y., Wang, R., Su, D., Tang, M., Liu, Y., & Li, Z. (2021). Antioxidant activity and healthy benefits of natural pigments in fruits: A review. International Journal of Molecular Sciences, 22(9), 4945. https://doi.org/10.3390/ijms22094945
Meng, X., Han, J., Wang, Q., & Tian, S. (2009). Changes in physiology and quality of peach fruits treated by methyl jasmonate under low temperature stress. Food Chemistry, 114(3), 1028-1035. https://doi.org/10.1016/j.foodchem.2008.09.109
Miguel, M. G. (2018). Betalains in some species of the Amaranthaceae family: A review. Antioxidants, 7(4), 53. https://doi.org/10.3390/antiox7040053
Mukherjee, A., Gaurav, A. K., Singh, S., Yadav, S., Bhowmick, S., Abeysinghe, S., & Verma, J. P. (2022). The bioactive potential of phytohormones: A review. Biotechnology Reports, 35, e00748. https://doi.org/10.1016/j.btre.2022.e00748
Mustafa, M. A., Ali, A., Seymour, G., & Tucker, G. (2018). Treatment of dragonfruit (Hylocereus polyrhizus) with salicylic acid and methyl jasmonate improves postharvest physico-chemical properties and antioxidant activity during cold storage. Scientia Horticulturae, 231, 89-96. https://doi.org/10.1016/j.scienta.2017.09.041
Naderi, N., Ghazali, H. M., Hussin, A. S. M., Amid, M., & Manap, M. Y. A. (2012). Characterization and quantification of dragon fruit (Hylocereus polyrhizus) betacyanin pigments extracted by two procedures. Pertanika Journal of Tropical Agricultural Science, 35(1), 33-40.
Nawawi, N. I. M., Ijod, G., Abas, F., Ramli, N. S., Adzahan, N. M., & Azman, E. M. (2023). Influence of different drying methods on anthocyanins composition and antioxidant activities of mangosteen (Garcinia mangostana L.) pericarps and LC-MS analysis of the active extract. Foods 12(12), 2351. https://doi.org/10.3390/foods12122351
Nguyen, H. T., Boonyaritthongchai, P., Buanong, M., Supapvanich, S., & Wongs-Aree, C. (2021). Chitosan-and κ-carrageenan-based composite coating on dragon fruit (Hylocereus undatus) pretreated with plant growth regulators maintains bract chlorophyll and fruit edibility. Scientia Horticulturae, 281, 109916. https://doi.org/10.1016/j.scienta.2021.109916
Nishikito, D. F., Borges, A. C. A., Laurindo, L. F., Otoboni, A. M. M. B., Direito, R., de Alvares Goulart, R., Nicolau, C. C., Fiorini, A. M. R., Sinatora, R. V., & Barbalho, S. M. (2023). Anti-inflammatory, antioxidant, and other health effects of dragon fruit and potential delivery systems for its bioactive compounds. Pharmaceutics, 15(1), 159. https://doi.org/10.3390/pharmaceutics15010159
Ordoñez Trejo, E. J. O., Brizzolara, S., Cardillo, V., Ruperti, B., Bonghi, C., & Tonutti, P. (2023). The impact of PGRs applied in the field on the postharvest behavior of fruit crops. Scientia Horticulturae, 318, 112103. https://doi.org/10.1016/j.scienta.2023.112103
Öztürk, B., Altuntas, E., Yildiz, K., Ozkan, Y., & Saracoglu, O. (2013). Effect of methyl jasmonate treatments on the bioactive compounds and physicochemical quality of’ ‘Fuji’ apples. Ciencia e Investigación Agraria, 40(1), 201-211. https://doi.org/10.4067/s0718-16202013000100018
Paśko, P., Galanty, A., Zagrodzki, P., Ku, Y. G., Luksirikul, P., Weisz, M., & Gorinstein, S. (2021). Bioactivity and cytotoxicity of different species of pitaya fruits – A comparative study with advanced chemometric analysis. Food Bioscience, 40, 100888. https://doi.org/10.1016/j.fbio.2021.100888
Paśko, P., Galanty, A., Zagrodzki, P., Luksirikul, P., Barasch, D., Nemirovski, A., & Gorinstein, S. (2021). Dragon fruits as a reservoir of natural polyphenolics with chemopreventive properties. Molecules, 26(8), 2158. https://doi.org/10.3390/molecules26082158
Ramli, N. S., Ismail, P., & Rahmat, A. (2014). Influence of conventional and ultrasonic-assisted extraction on phenolic contents, betacyanin contents, and antioxidant capacity of red dragon fruit (Hylocereus polyrhizus). The Scientific World Journal, 2014, 964731. https://doi.org/10.1155/2014/964731
Ren, Y., Yang, J., Lu, B., Jiang, Y., Chen, H., Hong, Y., Wu, B., & Miao, Y. (2017). Structure of pigment metabolic pathways and their contributions to white tepal color formation of Chinese Narcissus tazetta var. chinensis cv Jinzhanyintai. International Journal of Molecular Sciences, 18(9), 1923. https://doi.org/10.3390/ijms18091923
Ruan, J., Zhou, Y., Zhou, M., Yan, J., Khurshid, M., Weng, W., Cheng, J., & Zhang, K. (2019). Jasmonic acid signaling pathway in plants. International Journal of Molecular Sciences, 20(10), 2479. https://doi.org/10.3390/ijms20102479
Sadowska-Bartosz, I., & Bartosz, G. (2021). Biological properties and applications of betalains. Molecules, 26(9), 2520. https://doi.org/10.3390/molecules26092520
Saenjum, C., Pattananandecha, T., & Nakagawa, K. (2021). Antioxidative and anti-inflammatory phytochemicals and related stable paramagnetic species in different parts of dragon fruit. Molecules, 26(12), 3565. https://doi.org/10.3390/molecules26123565
Senevirathna, S. S. J., Ramli, N. S., Azman, E. M., Juhari, N. H., & Karim, R. (2021). Optimization of the drum drying parameters and citric acid level to produce purple sweet potato (Ipomoea batatas L.) powder using response surface methodology. Foods, 10(6), 1378. https://doi.org/10.3390/foods10061378
Taki-Nakano, N., Ohzeki, H., Kotera, J., & Ohta, H. (2014). Cytoprotective effects of 12-oxo phytodienoic acid, a plant-derived oxylipin jasmonate, on oxidative stress-induced toxicity in human neuroblastoma SH-SY5Y cells. Biochimica et Biophysica Acta - General Subjects, 1840(12), 3413-3422. https://doi.org/10.1016/j.bbagen.2014.09.003
Wang, H., Wu, Y., Yu, R., Wu, C., Fan, G., & Li, T. (2019). Effects of postharvest application of methyl jasmonate on physicochemical characteristics and antioxidant system of the blueberry fruit. Scientia Horticulturae, 258, 108785. https://doi.org/10.1016/j.scienta.2019.108785
Wang, S. Y., Bowman, L., & Ding, M. (2008). Methyl jasmonate enhances antioxidant activity and flavonoid content in blackberries (Rubus sp.) and promotes antiproliferation of human cancer cells. Food Chemistry, 107(3), 1261-1269. https://doi.org/10.1016/j.foodchem.2007.09.065
Wasternack, C., & Strnad, M. (2018). Jasmonates: News on occurrence, biosynthesis, metabolism and action of an ancient group of signaling compounds. International Journal of Molecular Sciences, 19(9), 2539. https://doi.org/10.3390/ijms19092539
Wei, J., Wen, X., & Tang, L. (2017). Effect of methyl jasmonic acid on peach fruit ripening progress. Scientia Horticulturae, 220, 206-213. https://doi.org/10.1016/j.scienta.2017.03.004
Wrolstad, R. E., & Smith, D. E. (2017). Color analysis. In S. S. Nielsen (Ed.), Food analysis (pp. 545-555). Springer. https://doi.org/10.1007/978-3-319-45776-5_31
Wu, Y., Xu, J., He, Y., Shi, M., Han, X., Li, W., Zhang, X., & Wen, X. (2019). Metabolic profiling of pitaya (Hylocereus polyrhizus) during fruit development and maturation. Molecules, 24(6), 1114. https://doi.org/10.3390/molecules24061114
Yadav, V., Wang, Z., Wei, C., Amo, A., Ahmed, B., Yang, X., & Zhang, X. (2020). Phenylpropanoid pathway engineering: An emerging approach towards plant defense. Pathogens, 9(4), 312. https://doi.org/10.3390/pathogens9040312
Zitha, E. Z. M., Magalhães, D. S., do Lago, R. C., Carvalho, E. E. N., Pasqual, M., & Boas, E. V. D. B. V. (2022). Changes in the bioactive compounds and antioxidant activity in red-fleshed dragon fruit during its development. Scientia Horticulturae, 291, 110611. https://doi.org/10.1016/j.scienta.2021.110611
ISSN 1511-3701
e-ISSN 2231-8542