PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 32 (5) Aug. 2024 / JST-4664-2023

 

The Compatibility of Cement Bonded Fibreboard Through Dimensional Stability Analysis: A Review

Nurul Huda Azmi, Nik Mohd Zaini Nik Soh and Hasniza Abu Bakar

Pertanika Journal of Science & Technology, Volume 32, Issue 5, August 2024

DOI: https://doi.org/10.47836/pjst.32.5.03

Keywords: Cement bonded fibreboard, dimensional stability, hot water treatment, mechanical properties, physical properties

Published on: 26 August 2024

Natural fibre in cement matrix was used to reinforce, increase tensile strength, and protect against matrix cracking. The various properties of the matrix, which were introduced by the shrinkage and thermal stresses, can be attributed to the microcracks on the composites. The composites experienced significant negative changes due to the spread of microcracks. Changes in moisture have an impact on the dimensional stability of cement-bonded fibreboards. The increasing moisture content caused the expansion of cement-bonded fibreboard, whereas shrinkage was caused by the moisture being evaporated. Since natural fibres connect ineffectively with the cement matrix due to their hydrophilicity, fibre-cement composites are dimensionally unstable. Hot water treatments operate by clearing the fibre’s surface of volatile compounds, impurities, and waxy elements and facilitating water absorption. Numerous variables, including the mixing ratio, the targeted density, and the pre-treatment technique used on natural fibre, influence the dimensional stability of cement-bonded fibreboard. The compatibility of cement-bonded fibreboard increases with increasing cement/fibre mixing ratio, density of cement-bonded fibreboard, hot water treatment temperature and duration.

  • Abdullah, A., Jamaludin, S. B., Anwar, M. I., Noor, M. M., & Hussin, K. (2011). Assessment of physical and mechanical properties of cement panel influenced by treated and untreated coconut fiber addition. Physics Procedia, 22, 263-269. https://doi.org/10.1016/j.phpro.2011.11.042

  • Adelusi, E. A., Adedokun, S. A., & Adelusi, F. T. (2019). Dimensional stability of cement bonded boards produced from Thaumatococus Danielli stalk. Journal of Material Science Research and Reviews 4(2), Article 51497.

  • Adelusi, E. A., Olaoye, K. O., & Adebawo, F. G. (2019). Strength and dimensional stability of cement bonded boards manufactured from mixture of Ceiba Pentandra and Gmelina Arborea Sawdust. Journal of Engineering Research and Reports 8(1), Article 51983. https://doi.org/ 10.9734/JERR/2019/v8i116980

  • Akasah, Z. A., Soh, N. M. Z. N., Dullah, H., Aziz, A. A., & Aminudin, E. (2019). The influence of oil palm empty fruit bunch fibre geometry on mechanical performance of cement bonded fibre boards. International Journal of Mechanical Engineering and Robotics Research, 8(4), 547-552. https://doi.org/10.18178/ijmerr.8.4.547-552

  • Amiandamhen, S. O., & Izekor, D. N. (2015). Assessment of the physical and mechanical properties of treated Kenaf fibre cement composites. Ife Journal of Technology, 23(2), 14-17.

  • Amiandamhen, S., & Izekor, D. (2013). Effect of wood particle geometry and pre-treatments on the strength and sorption properties of cement-bonded particle boards. Journal of Applied and Natural Science, 5(2), 318-322.

  • Amiandamhen, S. O., Agwu, C. U., & Ezenwaegbu, P. N. (2021). Evaluation of cement-bonded particleboards produced from mixed sawmill residues. Journal of the Indian Academy of Wood Science, 18(1), 14-19. https://doi.org/10.1007/s13196-021-00273-5

  • Amin, M. N., Ahmad, W., Khan, K., & Ahmad, A. (2022). A comprehensive review of types, properties, treatment methods and application of plant fibres in construction and building materials. Materials, 15(12), Article 4362. https://doi.org/10.3390/ma15124362

  • Atoyebi, O. D., Awolusi, T. F., & Davies, I. E. (2018). Artificial neural network evaluation of cement-bonded particle board produced from red iron wood (Lophira alata) sawdust and palm kernel shell residues. Case Studies in Construction Materials, 9, Article e00185. https://doi.org/10.1016/j.cscm.2018.e00185

  • Budiman, I., Sumarno, A., Prasetyo, A. M., Widodo, E., Akbar, F., Subiyanto, B., & Nugroho, A. (2021). The properties of cement boards reinforced with coconut coir fibre (Cocos nucifera) as building materials. In IOP Conference Series: Earth and Environmental Science, 762(1), Article 012074. https://doi.org/10.1088/1755-1315/762/1/012074

  • Cabral, M. R., Nakanishi, E. Y., Santos, V. D., Palacios, J. H., Godbout, S., Savastano, H., & Fiorelli, J. (2018). Evaluation of pre-treatment efficiency on sugarcane bagasse fibers for the production of cement composites. Archives of Civil and Mechanical Engineering, 18, 1092-1102. https://doi.org/10.1016/j.acme.2018.02.012

  • Castro, V., Parchen, C., & Iwakiri, S. (2018). Particle sizes and wood/cement ratio effect on the production of vibro-compacted composites. Floresta e Ambiente, 25, Article e20150213. https://doi.org/10.1590/2179-8087.021315

  • Dadile, A. M., Sotannde, O. A., & Alao, J. S. (2019). Physico-mechanical properties of cement bonded particleboards made from date palm fibres (Phoenix dactylifera) and obeche sawdust (Triplochyton schleroxylon). Journal of Materials Science Research and Reviews, 4(4), Article JMSRR.54083.

  • Drpić, A., Popović, J., Popović, M., & Điporović-Momčilović, M. (2022). Analysis of the influence of pre-treatment with liquid hot water (LHW) on the chemical composition of wooden chips. Advanced Technologies 2022, 11(2), 40-47. https://doi.org/10.5937/savteh2202040D

  • Elmoudnia, H., Faria, P., Jalal, R., Waqif, M., & Saâdi, L. (2023). Effectiveness of alkaline and hydrothermal treatments on cellulosic fibres extracted from the Moroccan Pennisetum Alopecuroides plant: Chemical and morphological characterization. Carbohydrate Polymer Technologies and Applications, 5, Article 100276. https://doi.org/10.1016/j.carpta.2022.100276

  • Fabiyi, J. S. (2004). Effects of chemical additive concentrations on strength and sorption of cement-bonded board. Journal of Tropical Forest Science, 16(3), 336-342.

  • Febrianto, F., Royama, L. I., Hidayat, W., Bakar, E. S., Kwon, J. H., & Kim, N. H. (2009). Development of oriented strand board from acacia wood (Acacia mangium Willd): Effect of pretreatment of strand and adhesive content on the physical and mechanical properties of OSB. Journal of the Korean Wood Science and Technology, 37(2), 121-127.

  • Futami, E., Shafigh, P., Katman, H. Y. B., & Ibrahim, Z. (2021). Recent progress in the application of coconut and palm oil fibres in cement-based materials. Sustainability, 13(22), Article 12865. https://doi.org/10.3390/su132212865

  • Fuwape, J. A., Fabiyi, J. S., & Osuntuyi, E. O. (2007). Technical assessment of three layered cement-bonded boards produced from wastepaper and sawdust. Waste Management, 27(11), 1611-1616. https://doi.org/10.1016/j.wasman.2006.09.005

  • Frybort, S., Mauritz, R., Teischinger, A., & Müller, U. (2008). Cement bonded composites-A mechanical review. BioResources, 3(2), 602-626.

  • Geremew, A., Winne, P. D., Demissie, T. A., & Backer, H. D. (2021). An overview of the characterization of natural cellulosic fibres. Key Engineering Materials, 881, 107-116. https://doi.org/10.4028/www.scientific.net/KEM.881.107

  • Halip, J. A., Hua, L. S., Ashaari, Z., Tahir, P. M., Chen, L. W., & Uyup, M. K. A. (2019). Effect of treatment on water absorption behavior of natural fiber–reinforced polymer composites. In M. Jawaid, M. Thariq & N. Saba (Eds.) Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites (pp. 141-156). Woodhead Publishing.

  • Hartono, R., Iswanto, A. H., Sucipto, T., & Lubis, K. M. (2018). Effect of particle pre-treatment on physical and mechanical properties of particleboard made from oil palm trunk. In IOP Conference Series: Earth and Environmental Science, 166(1), Article 012006. https://doi.org/10.1088/1755-1315/166/1/012006

  • Hassan, M. S. (2018). Moisture sensitivity and dimensional stability of carbonated fibre–cement composites. Advances in Cement Research, 30(9), 413-426. https://doi.org/10.1680/jadcr.17.00141

  • Hasan, K. F., Horváth, P. G., & Alpár, T. (2021). Development of lignocellulosic fiber reinforced cement composite panels using semi-dry technology. Cellulose, 28, 3631-3645. https://doi.org/10.1007/s10570-021-03755-4

  • Hussein, Z., Ashour, T., Khalil, M., Bahnasawy, A., Ali, S., Hollands, J., & Korjenic, A. (2019). Rice straw and flax fiber particleboards as a product of agricultural waste: An evaluation of technical properties. Applied Sciences, 9(18), Article 3878. https://doi.org/10.3390/app9183878

  • Ibrahim, Z., Ahmad, M., Aziz, A. A., Ramli, R., Jamaludin, M. A., Muhammed, S., & Alias, A. H. (2016). Dimensional stability properties of medium density fibreboard (MDF) from treated oil palm (Elaeis guineensis) empty fruit bunches (EFB) fibres. Open Journal of Composite Materials, 6(4), 91-99. https://doi.org/10.4236/ojcm.2016.64009

  • Iswanto, A. H., Supriyanto, Fatriasari, W., & Susilowati, A. (2018). Effect of particle treatment and adhesive type on physical, mechanical, and durability properties of particleboard made from Sorghum Bagasse. IOP Conference Series: Earth and Environmental Science, 126(1), Article 012016. https://doi.org/10.1088/1755-1315/126/1/012016

  • Izani, M. A. N., Paridah, M. T., Astimar, A. A., Nor, M. Y. M., & Anwar, U. M. K. (2012). Mechanical and dimensional stability properties of medium-density fibreboard produced from treated oil palm empty fruit bunch. Journal of Applied Sciences, 12(6), 561-567.

  • Maynet, W. A., Samsudin, E. M., Zaini Nik Soh, N. M., Ismail, L. H., Bakar, H. A., & Elgadi, A. (2023). Effects of fibre length on the physical properties of oil palm empty fruit bunch cement board (OPEFB-CB). Pertanika Journal of Science & Technology, 31(3), 1279 - 1290. https://doi.org/10.47836/pjst.31.3.09

  • Momoh, E. O., Osofero, A. I., & Menshykov, O. (2020). Physicomechanical properties of treated oil palm-broom fibres for cementitious composites. Journal of Materials in Civil Engineering, 32(10), Article 04020300. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003412

  • Nasser, R. A. (2014). Influence of board density and wood/cement ratio on the properties of wood-cement composite panels made from date palm fronds and tree prunings of buttonwood. Alexandria Science Exchange Journal, 35, 133-145. https://doi.org/10.21608/asejaiqjsae.2014.2588

  • Ogunjobi, K. M., Ajibade, M. A., Gakenou, O. F., & Gbande, S. (2019). Physical and mechanical properties of cement bonded particle board produced from anogeissus leiocarpus (DC.) guill and perr wood species. African Journal of Agriculture Technology and Environment, 8(1), 192-99.

  • Ogunjobi, K. M., Temitope, B. F., Oluwaseun, F. G., Ayanleye, S. O., & Thompson, O. E. (2019). Effects of board density and mixing ratio on the physio-mechanical properties of cement bonded particle board produced from Ceiba pentandra Sawdust. Agriculture and Forestry Journal, 3(2), 58-63.

  • Olonade, K. A., & Junior, H. S. (2023). Performance evaluation of treated coconut fibre in cementitious system. SN Applied Sciences, 5(8), Article 218. https://doi.org/10.1007/s42452-023-05444-2

  • Omoniyi, T. E. (2019). Potential of oil palm (elaeisguineensis) empty fruit bunch fibres cement composites for building applications. AgriEngineering, 1(2), 153-163. https://doi.org/10.3390/agriengineering1020012

  • Onuorah, E. O., Nnabuife, E. C., & Nwabanne, J. T. (2014). Potentials of Bambusa vulgaris grown in southeast nigeria for the manufacture of wood-cement composite panels. Journal of Minerals and Materials Characterization and Engineering, 2(5), Article 48500. https://doi.org/10.4236/jmmce.2014.25041

  • Peter, P., Soh, N. N., Akasah, Z. A., & Mannan, M. A. (2020). Durability evaluation of cement board produced from untreated and pre-treated empty fruit bunch fibre through accelerating ageing. IOP Conference Series: Materials Science and Engineering, 713(1), Article 012019. https://doi.org/10.1088/1757-899X/713/1/012019

  • Rahim, N. H. C. A., & Yunus, N. Y. M. (2021). Cement board filled with aged oil palm trunk strands: Effect of board densities and strand sizes. Gading Journal of Science and Technology, 4(2), 50-57.

  • Ridzuan, M. N., Bakar, H. A., Samsudin, E. M., Soh, N. M. Z. N., & Ismail, L. H. (2023). Effects of density variation on the physical and mechanical properties of Empty Fruit Bunch Cement Board (EFBCB). Pertanika Journal of Science & Technology, 31(3), 1157-1172. https://doi.org/10.47836/pjst.31.3.02

  • Scapini, T., Dos Santos, M. S., Bonatto, C., Wancura, J. H., Mulinari, J., Camargo, A. F., Klanovicz, N., Zabot, G. L., Tres, M. V., Fongaro, G., & Treichel, H. (2021). Hydrothermal pretreatment of lignocellulosic biomass for hemicellulose recovery. Bioresource Technology, 342, Article 126033. https://doi.org/10.1016/j.biortech.2021.126033

  • Singh, A., Singh, J., & Ajay, S. (2018). Properties of fiber cement boards for building partitions. International Journal of Applied Engineering Research, 13(10), 8486-8489.

  • Sotannde, O. A., Oluwadare, A. O., Ogedoh, O., & Adeogun, P. F. (2012). Evaluation of cement-bonded particle board produced fromafzelia africanawood residues. Journal of Engineering Science and Technology, 7(6), 732-743.

  • Surid, S. M., Maraz, K. M., Shahida, S., Ahmed, A., & Khan, R. A. (2021). A review on the properties of natural fibres and manufacturing techniques of fibre reinforced biocomposites. Modern Concepts in Material Science, 4(4), 1–15. https://doi.org/10.33552/MCMS.2021.04.000592

  • Thepthong, C., Ksapabutr, B., Chaiyut, N., & Panapoy, M. (2020). Enhanced mechanical performance of cement board composite reinforced with coconut coir fiber and tire rubber waste. IOP Conference Series: Materials Science and Engineering 773(1), Article 012057. https://doi.org/10.1088/1757-899X/773/1/012057

  • Viju, S., & Thilagavathi, G. (2022). Hot water treatment on nettle fibres: An environment- friendly/economical process for the production of oil sorbent. Journal of Natural Fibres, 19(2), 761-769. https://doi.org/10.1080/15440478.2020.1761929

  • Yel, H., Çavdar, A. D., & Kalaycioğlu, H. (2011). Mechanical and physical properties of cement-bonded perticleboard made from tea residues and hardboards. Key Engineering Materials, 471, 572-577. https://doi.org/10.4028/www.scientific.net/KEM.471-472.572

  • Zalinawati, M., Siregar, J. P., Tezara, C., Jaafar, J., Sazali, N., Oumer, A. N., & Hamdan, M. H. M. (2020). The effect of fibre treatment on water absorption and mechanical properties of buri palm (Corypha utan) fibre reinforced epoxy composites. Journal of Mechanical Engineering and Sciences, 14(4), 7379-7388. https://doi.org/10.15282/jmes.14.4.2020.06.0580

  • Zhao, K., Xue, S., Zhang, P., Tian, Y., & Li, P. (2019). Application of natural plant fibres in cement-based composites and the influence on mechanical properties and mass transport. Materials, 12(21), Article 3498. https://doi.org/10.3390/ma12213498

  • Zheng, S., Chen, M., Wu, J., & Xu, J. (2023). Effect of heat treatment on properties and interfacial compatibility of poplar veneer/polyethylene film composite plywood. Polymer Testing, 122, Article 108006. https://doi.org/10.1016/j.polymertesting.2023.108006

  • Zuraida, A., Insyirah, Y., Maisarah, T., & Zahurin, H. (2018). Influence of fiber treatment on dimensional stabilities of rattan waste composite boards. IOP Conference Series: Materials Science and Engineering, 290(1) Article 012029. https://doi.org/10.1088/1757-899X/290/1/012029

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-4664-2023

Download Full Article PDF

Share this article

Related Articles