PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Pre-Press / JTAS-3051-2024

 

Identification of Microorganisms Associated with Sea Cucumbers in Johor Coastal Seawater

Siti Najihah Solehin, Kamarul Rahim Kamarudin, Nur Sabrina Badrulhisham and ‘Aisyah Mohamed Rehan

Pertanika Journal of Tropical Agricultural Science, Pre-Press

DOI: https://doi.org/10.47836/pjtas.47.4.17

Keywords: 16S rRNA, bacteria, fungi, identification, ITS, phylogenetic analysis, pigment-producing microorganisms, sea cucumbers

Published: 2024-11-19

Sea cucumbers have been reported to host diverse microorganisms, including pigment-producing microorganisms. Investigating these microorganisms is essential for understanding ecological functions, potential biotechnology applications, and impacts on human health. However, despite their importance, the microbial diversity of sea cucumbers remains largely understudied. Thus, this study aims to identify the microorganisms associated with three species of sea cucumbers: Holothuria pardalis, Holothuria leucospilota, and Holothuria scabra collected from Johor coastal seawater. Identification of these isolates revealed that there were twenty-two strains of bacteria and three strains of fungi in total, representing 11 taxa, including 9 taxa from bacteria, namely Staphylococcus, Bacillus, Brevibacillus, Psychrobacter, Stenotrophomonas, Chryseobacterium, Sphingomonas, and Pseudoxanthomonas, and two taxa from fungi: Aspergillus and Rhodotorula. The isolates were identified using 16S rRNA for bacteria and internal transcribed spacer for fungi. Among these species, Chryseobacterium sp., Sphingomonas sp., and Pseudoxanthomonas sp. were first reported as part of the pigment-producing microorganisms found in sea cucumbers in Malaysia. Thus, these findings offer a novel insight into pigment-producing microorganisms in sea cucumbers and their potential as natural alternatives for colourants.

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

  • Bajwa, K., Bishnoi, N. R., Toor, M., Gupta, S., Sharma, P., Kirrolia, A., Kumar, S. S., Sharma, J., & Selvan, S. T. (2018). Isolation, screening, characterization of indigenous oleaginous bacteria: Evaluation of various carbon and nitrogen sources as substrates for single celled oil producing bacteria. Asian Journal of Biotechnology and Bioresource Technology, 3(1), 1–12. https://doi.org/10.9734/AJB2T/2018/39260

  • Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Ostell, J., Pruitt, K. D., & Sayers, E. W. (2018). GenBank. Nucleic Acids Research, 46(D1), D41–D47. https://doi.org/10.1093/nar/gkx1094

  • Brandt, J. F. (1835). Prodromus descriptionis animalium Ab H. Mertensio in orbis terrarum circumnavigatione observatorum [Prodrome of the description of animals observed by H. Mertensio in the circumnavigation of the world]. Harvard University Press.

  • Busse, H.-J., Denner, E. B. M., Buczolits, S., Salkinoja-Salonen, M., Bennasar, A., & Kämpfer, P. (2003). Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. International Journal of Systematic and Evolutionary Microbiology, 53(5), 1253–1260. https://doi.org/10.1099/ijs.0.02461-0

  • Chakraborty, S. K. (2022). Ocean ecosystem and its multidimensional eco-functionality and significance. In R. Brinkmann (Ed.), The Palgrave handbook of global sustainability (pp. 1–45). Palgrave Macmillan. https://doi.org/10.1007/978-3-030-38948-2_37-1

  • Chu, L., Huang, J., Muhammad, M., Deng, Z., & Gao, J. (2020). Genome mining as a biotechnological tool for the discovery of novel marine natural products. Critical Reviews in Biotechnology, 40(5), 571–589. https://doi.org/10.1080/07388551.2020.1751056

  • Ennas, C., Pasquini, V., Abyaba, H., Addis, P., Sarà, G., & Pusceddu, A. (2023). Sea cucumbers bioturbation potential outcomes on marine benthic trophic status under different temperature regimes. Scientific Reports, 13, 11558. https://doi.org/10.1038/s41598-023-38543-6

  • Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39(4), 783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

  • Gao, F., Tan, J., Sun, H., & Yan, J. (2014). Bacterial diversity of gut content in sea cucumber (Apostichopus japonicus) and its habitat surface sediment. Journal of Ocean University of China, 13, 303–310. https://doi.org/10.1007/s11802-014-2078-7

  • Gianasi, B. L., Hamel, J.-F., Montgomery, E. M., Sun, J., & Mercier, A. (2021). Current knowledge on the biology, ecology, and commercial exploitation of the sea cucumber Cucumaria frondosa. Reviews in Fisheries Science and Aquaculture, 29(4), 582–653. https://doi.org/10.1080/23308249.2020.1839015

  • Halder, D., & Pahari, S. K. (2020). An overviw of sea cucumber: chemistry and pharmacology of its metabolites. Indian Research Journal of Pharmacy and Science, 7(2), 2277–2298. https://doi.org/10.21276/irjps.2020.7.2.19

  • Hossain, A., Dave, D., & Shahidi, F. (2020). Northern sea cucumber (Cucumaria frondosa): A potential candidate for functional food, nutraceutical, and pharmaceutical sector. Marine Drugs, 18(5), 274. https://doi.org/10.3390/md18050274

  • Hugo, C., Bernardet, J.-F., Nicholson, A., & Kämpfer, P. (2019). Chryseobacterium. Wiley. https://doi.org/10.1002/9781118960608.gbm00301.pub2

  • Jaeger, G. F. (1833). De Holothuriis [Of the Holothuria]. https://www.biodiversitylibrary.org/page/10588969#page/5/mode/1up

  • Kamarudin, K. R., & Rehan, M. M. (2018). Gram-positive bacteria with commercial potential from the gastrointestines of Holothuria (Mertensiothuria) Leucospilota (Timun Laut) and Stichopus Horrens (Gamat) from Malaysian waters. Pertanika Journal of Tropical Agricultural Science, 41(2), 605–620.

  • Kamarudin, K. R., Ngah, N., Hamid, T. H. T. A., & Susanti, D. (2013). Isolation of a pigment-producing strain of Staphylococcus kloosii from the respiratory tree of Holothuria (Mertensiothuria) leucospilota (Brandt 1835) from Malaysian waters. Tropical Life Sciences Research, 24(1), 85–100.

  • Kamarudin, K. R., Rehan, M. M., Noor, H. M., Ramly, N. Z., & Rehan, A. M. (2016). 16S rRNA barcoding technique for species identification of processed sea cucumbers from selected Malaysian markets. Journal of Science and Mathematics Letters, 4, 10–23.

  • Kamarudin, K. R., Usup, G., Hashim, R., & Rehan, M. M. (2015). Sea cucumber (Echinodermata: Holothuroidea) species richness at selected localities in Malaysia. Pertanika Journal of Tropical Agricultural Science, 38(1), 7–32.

  • Kapli, P., Yang, Z., & Telford, M. J. (2020). Phylogenetic tree building in the genomic age. Nature Reviews Genetics, 21, 428–444. https://doi.org/10.1038/s41576-020-0233-0

  • Khalifa, S. A. M., Elias, N., Farag, M. A., Chen, L., Saeed, A., Hegazy, M.-E. F., Moustafa, M. S., Abd El-Wahed, A., Al-Mousawi, S. M., Musharraf, S. G., Chang, F.-R., Iwasaki, A., Suenaga, K., Alajlani, M., Göransson, U., & El-Seedi, H. R. (2019). Marine natural products: A source of novel anticancer drugs. Marine Drugs, 17(9), 491. https://doi.org/10.3390/md17090491

  • Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., & Glöckner, F. O. (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research, 41(1), e1. https://doi.org/10.1093/nar/gks808

  • Li, F., Gao, F., Tan, J., Fan, C., Sun, H., Yan, J., Chen, S., & Wang, X. (2016). Characterization and identification of enzyme-producing microflora isolated from the gut of sea cucumber Apostichopus japonicus. Chinese Journal of Oceanology and Limnology, 34, 153–162. https://doi.org/10.1007/s00343-015-4149-z

  • Lipski, A., & Stackebrandt, E. S. (2015). Pseudoxanthomonas. Wiley. https://doi.org/10.1002/9781118960608.gbm01234

  • Liu, H., Xue, C., & Li, Z. (2023). Diversity, distribution, and biology of sea cucumber. In C. Xue (Ed.), Advances in sea cucumber processing technology and product development (pp. 1–20). Springer. https://doi.org/10.1007/978-3-031-16512-2_1

  • Louw, S., & Bűrgener, M. (2020). A rapid assessment of the sea cucumber trade from Africa to Asia. TRAFFIC International.

  • Lukman, A. L., Nordin, N. F. H., & Kamarudin, K. R. (2014). Microbial population in the coelomic fluid of Stichopus chloronotus and Holothuria (Mertensiothuria) leucospilota collected from Malaysian waters. Sains Malaysiana, 43(7), 1013-1021.

  • Marchese, P., Garzoli, L., Gnavi, G., O’Connell, E., Bouraoui, A., Mehiri, M., Murphy, J. M., & Varese, G. C. (2020). Diversity and bioactivity of fungi associated with the marine sea cucumber Holothuria poli: Disclosing the strains potential for biomedical applications. Journal of Applied Microbiology, 129(3), 612–625. https://doi.org/10.1111/jam.14659

  • Mirhendi, H., Diba, K., Rezaei, A., Jalalizand, N., Hosseinpur, L., & Khodadadi, H. (2007). Colony PCR is a rapid and sensitive method for DNA amplification in yeasts. Iran Journal of Public Health, 36(1), 40–44.

  • Mohsen, M., Zhang, L., Sun, L., Lin, C., Liu, S., Wang, Q., & Yang, H. (2020). A deposit-feeder sea cucumber also ingests suspended particles through the mouth. Journal of Experimental Biology, 223(24), jeb230508. https://doi.org/10.1242/jeb.230508

  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

  • Selenka, E. (1867). Beiträge zur anatomie und systematik der Holothurien [Contributions to the anatomy and systematics of Holothuria] (Vol. 17). W. Engelmann Publisher.

  • Solehin, S. N., Kamarudin, K. R., Akashah, N., Rehan, A. M., Bakar, M. A. L. A., Badrulhisham, N. S., Rahman, N. S. A., Akma, U. N., Shahdan, F., Azman, H., Fadzil, S. N. M., Faid, N. H. M., Zaman, N. S. S., Legiman, M. I., Salleh, F. M., & Esa, Y. (2021). Species identification and relationship of sea cucumber species from Pulau Tinggi and Sedili Kechil, Johor based on ossicle shape. Journal of Sustainable Natural Resources, 2(1), 38-45. https://doi.org/10.30880/jsunr.2021.02.01.006

  • Song, Z., Li, H., Wen, J., Zeng, Y., Ye, X., Zhao, W., Xu, T., Xu, N., & Zhang, D. (2020). Consumers’ attention on identification, nutritional compounds, and safety in heavy metals of Canadian sea cucumber in Chinese food market. Food Science and Nutrition, 8(11), 5962–5975. https://doi.org/10.1002/fsn3.1882

  • Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences, 101(30), 11030–11035. https://doi.org/10.1073/pnas.0404206101

  • Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120

  • Tolon, M. T., Karacalar, U., & Şirin, C. (2021). Observation of Vibrio mediterranei (Pujalte and Garay 1986) / Vibrio shiloi (Kushmaro et al. 2001) bacteria from skin ulcers of the cultured sea cucumber Holothuria poli (Delle Chiaje, 1823). Ege Journal of Fisheries and Aquatic Sciences, 38(3), 393–397. https://doi.org/10.12714/egejfas.38.3.16

  • Wang, J.-H., Zhao, L.-Q., Liu, J.-F., Wang, H., & Xiao, S. (2015). Effect of potential probiotic Rhodotorula benthica D30 on the growth performance, digestive enzyme activity and immunity in juvenile sea cucumber Apostichopus japonicus. Fish and Shellfish Immunology, 43(2), 330–336. https://doi.org/10.1016/j.fsi.2014.12.028

  • Wibowo, J. T., Kellermann, M. Y., Versluis, D., Putra, M. Y., Murniasih, T., Mohr, K. I., Wink, J., Engelmann, M., Praditya, D. F., Steinmann, E., & Schupp, P. J. (2019). Biotechnological potential of bacteria isolated from the sea cucumber Holothuria leucospilota and Stichopus vastus from Lampung, Indonesia. Marine Drugs, 17(11), 635. https://doi.org/10.3390/md17110635

  • Wingfield, L. K., Atcharawiriyakul, J., & Jitprasitporn, N. (2024). Diversity and characterization of culturable fungi associated with the marine sea cucumber Holothuria scabra. PLOS One, 19(1), e0296499. https://doi.org/10.1371/journal.pone.0296499

  • Yang, G., Tian, X., & Dong, S. (2019). Bacillus cereus and rhubarb regulate the intestinal microbiota of sea cucumber (Apostichopus japonicus Selenka): Species-species interaction, network, and stability. Aquaculture, 512, 734284. https://doi.org/10.1016/j.aquaculture.2019.734284

  • Zulfigar, Y., Sim, Y. K., & Aileen Tan, S. H. (2007). The distribution of sea cucumbers in Pulau Aur, Johore, Malaysia. Publications of the Seto Marine Biological Laboratory, 8, 73–86. https://doi.org/10.5134/70908

ISSN 0128-7702

e-ISSN 2231-8534

Article ID

JTAS-3051-2024

Download Full Article PDF

Share this article

Recent Articles