e-ISSN 2231-8542
ISSN 1511-3701
Jafar Ali Natasha, Abd Rahaman Yasmin, Abd Manan Siti-Maisarah, Zakaria Nur-Anis, Murugasu Tharshaini, Siti Suri Arshad, Wan Noor Ayuni, Mohammed Nma Mohammed and Saulol Hamid Nur-Fazila
Pertanika Journal of Tropical Agricultural Science, Volume 45, Issue 4, November 2022
DOI: https://doi.org/10.47836/pjtas.45.4.15
Keywords: Herpesvirus, Klang Valley, parvovirus, Rattus spp., virus, West Nile virus
Published on: 4 November 2022
Free-roaming and scavenging lifestyles of Rattus spp. in densely populated urban areas expose them to multiple pathogens that facilitate the transmission of infection to the human population more rapidly, raising public health concerns. There is limited information on the status of rat susceptibility to virus infection, particularly West Nile virus (WNV), herpesvirus, and parvovirus, to prepare for emerging zoonosis. A total of 23 (n = 23) blood samples collected from Rattus spp. in the wet market areas of Klang Valley, Malaysia, were subjected to molecular assay using a one-step reverse transcription-polymerase chain reaction (RT-PCR) to detect the highly conserved region of the WNV capsid and pre-membrane protein via nested polymerase chain reaction (PCR) assay targeting highly conserved amino acid motifs within the herpesviral DNA-directed DNA polymerase gene (DPOL) and polymerase chain reaction (PCR) assay targeting the parvovirus non-structural (NS) protein. As a result, 4 out of 23 (17.39%) rats were positive for herpesvirus DNA, but none were positive for WNV RNA and parvovirus DNA. The positive PCR amplicons of herpesvirus DNA were subjected to partial DNA sequencing analysis, 100% identical to Acomys herpesvirus SVMS 226,222 from Betaherpesvirinae, which is highly suggestive of rat cytomegalovirus (RCMV). This study has successfully demonstrated the presence of RCMV from Rattus spp. in the Klang Valley. The RCMV potentially crosses species barriers and establishes infection, raising public health concerns. The non-viraemic state of WNV or parvovirus infection, low sample size, and limited niche distribution emphasise the need for the expansion of this study in the future.
Ain-Fatin, R., Nur-Fazila, S. H., Nur-Mahiza M. I., Yasmin A. R., Muhammad-Azam F., & Nur-Kuain, H. (2020). Incidental findings of Heterakis spumosa and Chirodiscoides caviae with pinworms in Sprague Dawley rats. Sains Malaysiana, 49(5), 1097-1106. https://doi.org/10.17576/jsm-2020-4905-14
Ain-Najwa, M. Y., Yasmin, A. R., Omar, A. R., Arshad, S. S., Abu, J., Mohammed, H. O., Kumar, K., Loong S. K., Rovie-Ryan, J. J., & Mohd-Kharip-Shah, A. K. (2020). Evidence of West Nile virus infection in migratory and resident wild birds in west coast of peninsular Malaysia. One Health, 10, 100134. https://doi.org/10.1016/j.onehlt.2020.100134
Azab, W., Dayaram, A., Greenwood, A. D., & Osterrieder, N. (2018). How host specific are herpesviruses? Lessons from herpesviruses infecting wild and endangered mammals. Annual Review of Virology, 5, 53-68. https://doi.org/10.1146/annurev-virology-092917-043227
Barthold, S. W., Griffey, S. M., & Percy, D. H. (2016). Pathology of laboratory rodents and rabbits (4th ed.). John Wiley & Sons.
Belmain, S. R. (2006, May 3-6). Understand rats and disease problems [Paper presentation]. Rats and Human Health in Africa: Proceedings of An International Workshop on Rodent-borne Diseases and the RatZooMan Research Project, Republic of South Africa. http://projects.nri.org/ratzooman/docs/workshop_proceedings.pdf
Chakma, N., Sarker, N. J., Belmain, S., Sarker, S. U., Aplin, K., & Sarker, S. K. (2018). New records of rodent species in Bangladesh: Taxonomic studies from rodent outbreak areas in the Chittagong hill tracts. Bangladesh Journal of Zoology, 46(2), 217-230. https://doi.org/10.3329/bjz.v46i2.39055
Cigarroa-Toledo, N., Talavera-Aguilar, L. G., Baak-Baak, C. M., García-Rejón, J. E., Hernandez-Betancourt, S., Blitvich, B. J., & Machain-Williams, C. (2016). Serologic evidence of flavivirus infections in peridomestic rodents in Merida, Mexico. Journal of Wildlife Diseases, 52(1), 168-172. https://doi.org/10.7589/2015-05-116
Dietrich, G., Montenieri, J. A., Panella, N. A., Langevin, S., Lasater, S. E., Klenk, K., Kile, J. C., & Komar, N. (2005). Serologic evidence of West Nile virus infection in free-ranging mammals, Slidell, Louisiana, 2002. Vector-Borne Zoonotic Diseases, 5(3), 288-292. https://doi.org/10.1089/vbz.2005.5.288
Easterbrook, J. D., Kaplan, J. B., Glass, G. E., Watson, J., & Klein, S. L. (2008). A survey of rodent-borne pathogens carried by wild-caught Norway rats: A potential threat to laboratory rodent colonies. Laboratory Animals, 42(1), 92-98. https://doi.org/10.1258/la.2007.06015e
Hirota, J., & Shimizu, S. (2013). A new competitive ELISA detects West Nile virus infection using monoclonal antibodies against the precursor-membrane protein of West Nile virus. Journal of Virological Methods, 188(1-2), 132-138. https://doi.org/10.1016/j.jviromet.2012.12.002
Kilham, L. (1966). Viruses of laboratory and wild rats. National Cancer Institute Monograh, 20, 117-146.
Kohn, D. F., & Clifford, C. B. (2002). Biology and diseases of rats. In J. G. Fox, F. M. Loew, L. C. Anderson, & F. W. Quimby (Eds.), Laboratory animals medicine (2nd ed., pp. 121-165). Academic Press. https://doi.org/10.1016/B978-012263951-7/50007-7
MacLachlan, N. J., & Dubovi E. J. (2017). Herpesvirales. In N. J. MacLachlan & E. J. Dubovi (Eds.), Fenner’s veterinary virology (5th ed., pp. 189-216). Academic Press. https://doi.org/10.1016/B978-0-12-800946-8.00009-X
Macy Jr., J. D., & Compton, S. R. (2020). Viral disease. In M. A. Suckow, R. P. Wilson, F. C. Hankenson, & P. L. Foley (Eds.), Laboratory rat (3rd ed., pp. 541-568). Academic Press. https://doi.org/10.1016/B978-0-12-814338-4.00013-1
Mohd-Qawiem, F., Nur-Fazila, S. H., Ain-Fatin, R., Yong, Q. H., Nur-Mahiza, M. I., & Yasmin, A. R. (2022). Detection of zoonotic-borne parasites in Rattus spp. in Klang Valley, Malaysia. Veterinary World, 15(4), 1006-1014. https://doi.org/10.14202/vetworld.2022.1006-1014
Moureau, G., Temmam, S., Gonzalez, J. P., Charrel, R. N., Grard, G., & de Lamballerie, X. (2007). A real-time RT-PCR method for the universal detection and identification of flaviviruses. Vector Borne Zoonotic Diseases, 7(4), 467-478. https://doi.org/10.1089/vbz.2007.0206
Murin, C. D., Wilson, I. A., & Ward, A. B. (2019). Antibody responses to viral infections: A structural perspective across three different enveloped viruses. Nature Microbiology, 4(5), 734-747. https://doi.org/10.1038/s41564-019-0392-y
Ntumvi, N. F., Mbala Kingebeni, P., Tamoufe, U., Kumakamba, C., Ndze, V., Ngay Lukusa, I., LeBreton, M., Atibu Losoma, J., Le Doux Diffo, J., N’Kawa, F., Takuo, J. M., Mulembakani, P., Nwobegahay, J., Makuwa, M., Muyembe Tamfum, J. J., Gillis, A., Harris, S., Rimoin, A. W., Hoff, N. A., … Lange, C.E. (2018). High herpesvirus diversity in wild rodent and shrew species in central Africa. Intervirology, 61(4), 155-165. https://doi.org/10.1159/000493796
Pritchett-Corning, K. R., Cosentino, J., & Clifford, C. B. (2009). Contemporary prevalence of infectious agents in laboratory mice and rats. Laboratory Animals, 43(2), 165-173. https://doi.org/10.1258/la.2008.008009
Rabson, A. S., Edgcomb, J. H., Legallais, F. Y., & Tyrell, S. A. (1969). Isolation and growth of rat cytomegalovirus in vitro. Proceedings of the Society for Experimental Biology and Medicine, 131(3), 923-927. https://doi.org/10.3181/00379727-131-34010
Root, J. J., Hall, J. S., Mclean, R. G., Marlenee, N. L., Beaty, B. J., Gansowski, J., & Clark, L. (2005). Serologic evidence of exposure of wild mammals to flaviviruses in the central and eastern United States. American Journal of Tropical Medicine and Hygiene, 72(5), 622-630.
Wan, C. H., Bauer, B. A., Pintel, D. J., & Riley, L. K. (2006). Detection of rat parvovirus type 1 and rat minute virus type 1 by polymerase chain reaction. Laboratory Animals, 40(1), 63-69. https://doi.org/10.1258/002367706775404408
ISSN 1511-3701
e-ISSN 2231-8542