e-ISSN 2231-8542
ISSN 1511-3701
Auwalu Garba Gashua, Zulkefly Sulaiman, Martini Mohammad Yusoff, Mohd Yusoff Abd. Samad, Mohd Fauzi Ramlan and Shafar Jefri Mokhatar
Pertanika Journal of Tropical Agricultural Science, Volume 46, Issue 3, August 2023
DOI: https://doi.org/10.47836/pjtas.46.3.07
Keywords: Bokashi fertilizer, conservation pit, NPK, rubber trees, soil fertility
Published on: 30 August 2023
Rubber is currently the second major industrial crop in Malaysia after oil palm. The use of bokashi fertilizer (BF) on industrial crops is still not popular, and farmers rely mostly on chemical fertilizers (CFs) that are costly and hazardous to the environment. This research was conducted at Hevea plantation, Universiti Putra Malaysia, between August 2020–October 2021. The study was to assess the short-term effects of BF with reduced NPK fertilization on soil fertility, growth, and yield of rubber. Seven treatments (T) were involved. T1, T2, and T3 denote 4, 8, and 12 kg BF per pit. T4 was 1 kg NPK as control, whereas T5, T6, and T7 denote 4, 8, and 12 kg BF + 500 g NPK per pit, respectively. The variables observed included total nitrogen (TN%), total phosphorus (TP%), organic carbon (OC%), organic matter (OM%), exchangeable cations, microbial counts, tree girth, and dry rubber yield. The major findings indicated that applying 12 kg BF has raised the soil’s TN%, OC%, and OM% by 165, 171.4, and 172.0%, respectively, compared to NPK control. Also, adding 4 kg BF + 500 g NPK has increased the soil’s cation exchange capacity and TP% values by 107.8 and 42.9%, respectively, compared to the control. Adding sole bokashi increased the bacterial population by 22.2–133.3%. Rubber yield was better on trees treated with 12 kg BF, though this did not differ significantly from other treatments. Therefore, applying 12 kg BF or 4 kg BF + 500 g NPK can improve soil fertility and save costs from using inorganic fertilizer by at least 50%.
Abdulla, I., & Arshad, F. M. (2017). Exploring relationships between rubber productivity and R&D in Malaysia. Outlook on Agriculture, 46(1), 28–35. https://doi.org/10.1177/0030727016689731
Abraham, J., Joseph, K., & Joseph, P. (2015). Effect of integrated nutrient management on soil quality and growth of Hevea brasiliensis during the immature phase. Rubber Science, 28(2), 159–167.
Akande, G. M., & Adekayode, F. O. (2019). Identification of soil microbial population under different land use. Tropical Plant Research, 6(1), 90–100. https://doi.org/10.22271/tpr.2019.v6.i1.013
Al Edrus, S. S. O., Tahir, P. M., Guan, C. T., Hua, L. S., Ab Halip, J., & Hao, L. C. (2019). Particleboard manufactured from rubberwood RRIM 2002 clone planted with different fertilizer treatment. International Journal of Recent Technology and Engineering, 8(2), 398–402. https://doi.org/10.35940/ijrte.B1077.0782S419
Ali, M. F., Abdul Aziz, A., & Williams, A. (2020). Assessing yield and yield stability of Hevea clones in the southern and central regions of Malaysia. Agronomy, 10(5), 643. https://doi.org/10.3390/agronomy10050643
Angelova, V. R., Akova, V. I., Artinova, N. S., & Ivanov, K. I. (2013). The effect of organic amendments on soil chemical characteristics. Bulgarian Journal of Agricultural Science, 19(5), 958–971.
Ansari, R. A., Sumbul, A., Rizvi, R., & Mahmood, I. (2019). Organic soil amendments: Potential tool for soil and plant health management. In R. A. Ansari & I. Mahmood (Eds.), Plant health under biotic stress (pp. 1-35). Springer. https://doi.org/10.1007/978-981-13-6043-5_1
Apori, S. O., Adams, S., Hanyabui, E., Mohammed, M., Murongo, M., & Kwasi Acheampong, M. (2020). Evaluation of soil fertility status in oil palm plantations in the Western Region of Ghana. AIMS Agriculture and Food, 5(4), 938–949. https://doi.org/10.3934/agrfood.2020.4.938
Aung, M., Aung, K. Z., & Kyi, N. T. (2019). The effects of EM-Bokashi compost and vegetable wastes compost on the growth of Hibiscus esculentus L. (lady’s finger) plant. https://zenodo.org/record/3236025
Aytenew, M., & Bore, G. (2020). Effects of organic amendments on soil fertility and environmental quality: A review. Journal of Plant Sciences, 8(5), 112-119. https://doi.org/10.11648/j.jps.20200805.12
Baruah, T. C., & Barthakur, H. P. (1997). A textbook of soil analysis. Vikas Publishing House Pvt. Ltd.
Bohluli, M., Teh, C. B. S., Hanif, A. H. M., & Rahman, Z. A. (2015). Review on the use of silt pits (contour trenches) as a soil and water conservation. In H. Jol & S. Jusop (Eds.), Advances in tropical soil science (pp. 63-80). UPM Press.
Bray, R. H., & Kurtz, L. T. (1945). Determination of total, organic, and available forms of phosphorus in soils. Soil Science, 59, 39–46. https://doi.org/10.1097/00010694-194501000-00006
Cai, A., Zhang, W., Xu, M., Wang, B., Wen, S., & Shah, S. A. A. (2018). Soil fertility and crop yield after manure addition to acidic soils in South China. Nutrient Cycling in Agroecosystems, 111, 61–72. https://doi.org/10.1007/s10705-018-9918-6
Carron, M. P., Auriac, Q., Snoeck, D., Villenave, C., Blanchart, E., Ribeyre, F., Marichal, R., Darminto, M., & Caliman, J. P. (2016). Do the impact of organic residues on soil quality extend beyond the deposition area under oil palm? European Journal of Soil Biology, 75, 54–61. https://doi.org/10.1016/j.ejsobi.2016.04.011
Chambon, B., Dao, X. L., Tongkaemkaew, U., & Gay, F. (2018). What determine smallholders’ fertilization practices during the mature period of rubber plantations in Thailand? Experimental Agriculture, 54(6), 824–841. https://doi.org/10.1017/S0014479717000400
Chotiphan, R., Vaysse, L., Lacote, R., Gohet, E., Thaler, P., Sajjaphan, K., Bottier, C., Char, C., Liengprayoon, S., & Gay, F. (2019). Can fertilization be a driver of rubber plantation intensification? Industrial Crops and Products, 141, 111813. https://doi.org/10.1016/j.indcrop.2019.111813
Damrongrak, I., Onthong, J., & Nilnond, C. (2015). Effect of fertilizer and dolomite applications on growth and yield of tapping rubber trees. Songklanakarin Journal of Science and Technology, 37(6), 643–650.
Fauzi, M. A. F., Noran, A. S., Maiden, N. A., & Aris, M. N. M. (2015). Performance of clones RRIM 2002 (PB 5/51 X FORD 351) and PB 260 (PB 5/51 X PB 49) at two different elevations in East Malaysia. International Journal of Agriculture, Forestry and Plantation, 1, 8–12.
Gashua, A. G., Sulaiman, Z., Yusoff, M. M., Samad, M. Y. A., Ramlan, M. F., & Salisu, M. A. (2022). Assessment of fertilizer quality in horse waste-based bokashi fertilizer formulations. Agronomy, 12(4), 937. https://doi.org/10.3390/agronomy12040937
Gates, D. M. (1979). Tree crops. BioScience, 29(6), 336-336. https://doi.org/10.2307/1307684
George, S., John, J., Joseph, P., Philip, A., & Punnoose, K. I. (2007). Impact of conservation pits on growth and yield of mature rubber. Journal of Rubber Research, 10(1), 44–53.
Giroh, D. Y., Adebayo, E. F., & Jongur, A. A. U. (2013). Analysis of labour productivity and constraints of rubber latex exploitation among smallholder rubber in the Niger Delta Region of Nigeria. Global Journal of Agricultural Research, 1(3), 16-26.
Gonçalves, P. D. S., Scaloppi Júnior, E. J., Martins, M. A., Moreno, R. M. B., Branco, R. B. F., & Gonçalves, E. C. P. (2011). Assessment of growth and yield performance of rubber tree clones of the IAC 500 series. Pesquisa Agropecuária Brasília, 46(12), 1643–1649. https://doi.org/ 10.1590/S0100-204X2011001200009
Guignard, M. S., Leitch, A. R., Acquisti, C., Eizaguirre, C., Elser, J. J., Hessen, D. O., Jeyasingh, P. D., Neiman, M., Richardson, A. E., Soltis, P. S., Soltis, D. E., Stevens, C. J., Trimmer, M., Weider, L. J., Woodward, G., & Leitch, I. J. (2017). Impacts of nitrogen and phosphorus: From genomes to natural ecosystems and agriculture. Frontiers in Ecology and Evolution, 5, 70. https://doi.org/10.3389/fevo.2017.00070
Guo, P. T., Li, M. F., Luo, W., Tang, Q. F., Liu, Z. W., & Lin, Z. M. (2015). Digital mapping of soil organic matter for rubber plantation at regional scale: An application of random forest plus residuals kriging approach. Geoderma, 237–238, 49–59. https://doi.org/10.1016/j.geoderma.2014.08.009
Hata, F. T., Ventura, M. U., de Freitas Fregonezi, G. A., & de Lima, R. F. (2021). Bokashi, boiled manure and penergetic applications increased agronomic production variables and may enhance powdery mildew severity of organic tomato plants. Horticulturae, 7(2), 27. https://doi.org/10.3390/horticulturae7020027
Hazelton, P., & Murphy, B. (2016). Interpreting soil test results: What do all the numbers mean? (3rd ed.). CSIRO Publishing. https://doi.org/10.1071/9781486303977
Hernandez, T., Berlanga, J. G., Tormos, I., & Garcia, C. (2021). Organic versus in organic fertilizers: Response of soil properties and crop yield. AIMS Geosciences, 7(3), 415–439. https://doi.org/10.3934/geosci.2021024
Hoshino, R. T., Alves, G. A. C., Bertoncelli, D. J., Zeffa, D. M., Stulzer, G. C. G., Takahashi, L. S. A., & de Faria, R. T. (2021). Bokashi, superfosfato simples e fertirrigação no crescimento e nutrição de Cattleya híbrida (Orchidaceae) [Bokashi, simple superphosphate, and fertigation for the growth and nutrition of hybrid Cattleya (Orchidaceae)]. Semina: Ciências Agrárias, 42(5), 2703–2716. https://doi.org/10.5433/1679-0359.2021v42n5p2703
Huang, Y., Jing, Y., Bei, M., Yang, H., Cha, Z., Lin, Q., & Luo, W. (2020). Short term effects of organic amendments on soil fertility and root growth of rubber trees on Hainan Island, China. Journal of Forestry Research, 31, 2137–2144. https://doi.org/10.1007/s11676-019-01023-7
Kakar, K., Nitta, Y., Asagi, N., Komatsuzaki, M., Shiotsu, F., Kokubo, T., & Xuan, T. D. (2019). Morphological analysis on comparison of organic and chemical fertilizers on grain quality of rice at different planting densities. Plant Production Science, 22(4), 510–518. https://doi.org/10.1080/1343943X.2019.1657777
Kumari, P., Mathanker, G. K., Sharma, B., & Maurya, B. R. (2014). Effect of organic amendments on microbial population and enzyme activities of soil. Journal of Crop and Weed, 10(1), 64–68.
Lasmini, S. A., Nasir, B., Hayati, N., & Edy, N. (2018). Improvement of soil quality using bokashi composting and NPK fertilizer to increase shallot yield on dry land. Australian Journal of Crop Science, 12(11), 1743–1749. https://doi.org/10.21475/ajcs.18.12.11.p1435
Long, P., Sui, P., Gao, W. S., Wang, B. B., Huang, J. X., Yan, P., Zou, J. X., Yan, L. L., & Chen, Y. Q. (2015). Aggregate stability and associated C and N in a silty loam soil as affected by organic material inputs. Journal of Integrative Agriculture, 14(4), 774–787. https://doi.org/10.1016/S2095-3119(14)60796-6
Maass, V., Céspedes, C., & Cárdenas, C. (2020). Effect of Bokashi improved with rock phosphate on parsley cultivation under organic greenhouse management. Chilean Journal of Agricultural Research, 80(3), 444–451. https://doi.org/10.4067/S0718-58392020000300444
Mohsen, B., Christopher, T. B. S., Husni, M. H. A., & Zaharah, A. R. (2014). Soil , nutrients and water conservation practices in oil palm plantations on sloping and steep lands in Malaysia. In International Agriculture Congress 2014 (pp. 37-40). Faculty of Agriculture UPM. https://doi.org/10.13140/RG.2.1.4396.1842
Moradidalini, A., Bohluli, M., Teh, C. B. S., Goh, K. J., Hamdan, J., & Shamshuddin, J. (2011). Effectiveness of silt pits as a soil nutrient and water conservation method for non-terraced slopes. In Advances in soil science (pp. 70-92). UPM Press.
Murillo-Amador, B., Morales-Prado, L. E., Troyo-Diéguez, E., Córdoba-Matson, M. V., Hernández-Montiel, L. G., Rueda-Puente, E. O., & Nieto-Garibay, A. (2015). Changing environmental conditions and applying organic fertilizers in Origanum vulgare L. Frontiers in Plant Science, 6, 549. https://doi.org/10.3389/fpls.2015.00549
Nakhro, N., & Dkhar, M. S. (2010). Impact of organic and in organic fertilizers on microbial populations and biomass carbon in paddy field soil. Journal of Agronomy, 9, 102–110. https://doi.org/10.3923/ja.2010.102.110
Natsheh, B., & Mousa, S. (2014). Effect of organic and in organic fertilizers application on soil and cucumber (Cucumis sativa L.) plant productivity. International Journal of Agriculture and Forestry, 4(3), 166–170. https://doi.org/10.5923/j.ijaf.20140403.03
Ning, C. C., Gao, P. D., Wang, B. Q., Lin, W. P., Jiang, N. H., & Cai, K. Z. (2017). Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient, enzyme activity and heavy metal content. Journal of Integrative Agriculture, 16(8), 1819–1831. https://doi.org/10.1016/S2095-3119(16)61476-4
Paardekooper, E. C. (1989). Exploitation of the rubber tree. Rubber, 5, 349–414.
Pohan, S., Amrizal, A., Masni, E., Puspitasari, W., Puspitasari, W., Malau, N., Pasaribu, R., Pasaribu, R., & Siregar, R. (2019). The use of bokashi compost as a soil fertility amendment in increasing vegetative growth of organic tomato (Lycopersicum esculentum Mill.). European Union Digital Library. https://eudl.eu/doi/10.4108/eai.18-10-2018.2287296
Quiroz, M., & Flores, F. (2019). Nitrogen availability, maturity and stability of bokashi-type fertilizers elaborated with different feedstocks of animal origin. Archives of Agronomy and Soil Science, 65(6), 867–875. https://doi.org/10.1080/03650340.2018.1524138
Roba, T. B. (2018). Review on: The effect of mixing organic and inorganic fertilizer on productivity and soil fertility. Open Access Library Journal, 5, e4618. https://doi.org/10.4236/oalib.1104618
Salisu, M., Daud, N., & Ahmad, I. (2013). Influence of fertilizer rates and soil series on growth performance of natural rubber (Hevea brasiliensis) latex timber clones. Australian Journal of Crop Science, 7(13), 1998–2004.
Seleiman, M. F., & Kheir, A. M. S. (2018). Saline soil properties, quality and productivity of wheat grown with bagasse ash and thiourea in different climatic zones. Chemosphere, 193, 538–546. https://doi.org/10.1016/j.chemosphere.2017.11.053
Shabbir, I., Samad, M. Y. A., Othman, R., Wong, M., Sulaiman, Z., Md Jaafar, N., & Bukhari, S. A. H. (2021). Impact of microorganism inoculation on growth and Si accumulation in rubber seedlings. Journal of Rubber Research, 24, 501-509. https://doi.org/10.1007/s42464-021-00117-4
Singh, D., Sharma, R. P., Sankhyan, N. K., & Meena, S. C. (2017). Influence of long-term application of chemical fertilizers and soil amendments on physico-chemical soil quality indicators and crop yield under maize-wheat cropping system in an acid Alfisol. Journal of Pharmacognosy and Phytochemistry, 6(3), 198-204.
Siti Naimah, S., Nashriyah, M., & Mohd Noor, A. G.(2015). Effects of organic and inorganic fertilizers on growth and yield of Vigna unguiculata subsp. sesquipedalis L. (Verdc.). Journal of Tropical Plant Physiology, 7, 1–13.
Sopheaveasna, M., Phearun, P., Gohet, E., Lacote, R., Snoeck, D., & Tiva, L. K. (2019, September 30 - October 1). Fertilizer application on immature rubber. The case of clone PB 330 in Tboung Khmum Province, Cambodia. International Rubber Conference 2019, Nay Pyi Taw, Myanmar.
Sulok, K. M. T., Ahmed, O. H., Khew, C. Y., Lai, P. S., Zehnder, J. A. M., Wasli, M. E., & Aziz, Z. F. A. (2021). Use of organic soil amendments to improve soil health and yield of immature pepper (Piper nigrum L.). Organic Agriculture, 11, 145–161. https://doi.org/10.1007/s13165-020-00340-0
Sung, C. T. B., Joo, G. K., Chien, L. C., & Seng, S. T. (2011). Short-term changes in the soil physical and chemical properties due to different soil and water conservation practices in a sloping land oil palm estate. Pertanika Journal of Tropical Agricultural Science, 34(1), 41-62.
Tiva, L. K., Lacote, R., Chan, C., Sopheaveasna, M., & Gohet, E. (2016, November 20-25). Effect of fertilization on latex yield potential and physiological parameters of clone PB 217 in Cambodia. CRRI & IRRDB International Rubber Conference 2016, Siem Reap, Cambodia.
Ubi, W., Ubi, M. W., & Akpanidiok, A. U. (2013). Effect of NPK fertilizer and interval management on the chemical properties of coastal plain sands of Akpabuyo, Nigeria. Global Journal of Agricultural Sciences, 12(1), 73-79. https://doi.org/10.4314/gjass.v12i1.10
Vrignon-Brenas, S., Gay, F., Ricard, S., Snoeck, D., Perron, T., Mareschal, L., Laclau, J., Gohet, É., & Malagoli, P. (2019). Nutrient management of immature rubber plantations. A review. Agronomy for Sustainable Development, 39, 11. https://doi.org/10.1007/s13593-019-0554-6
Wahyuningsih, R., Marchand, L., Pujianto, S., & Caliman, J. P. (2019). Impact of inorganic fertilizer to soil biological activity in an oil palm plantation. In IOP Conference Series: Earth and Environmental Science (Vol. 336, No. 1, p. 012017). IOP Publishing. https://doi.org/10.1088/1755-1315/336/1/012017
Walkley, A. (1947). A critical examination of a rapid method for determining organic carbon in soils — Effect of variations in digestion conditions and of inorganic soil constituents. Soil Science, 63(4), 251-264. https://doi.org/10.1097/00010694-194704000-00001
Wijayanto, T., Zulfikar, T. M., Sarman, A. M., & Zamrun, M. (2016). Influence of bokashi fertilizer on soil chemical properties, soybean (Glycine max (L.) Merrill) yield components and production. WSEAS Transactions on Biology and Biomedicine, 13, 134-141.
Ye, L., Zhao, X., Bao, E., Li, J., Zou, Z., & Cao, K. (2020). Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Scientific Reports, 10, 177. https://doi.org/10.1038/s41598-019-56954-2
ISSN 1511-3701
e-ISSN 2231-8542