e-ISSN 2231-8542
ISSN 1511-3701
Nurulhuda Najihah, Aminuddin Baki Nurul Najian, Amir Syahir, Jalila Abu, Kok Lian Ho, Wen Siang Tan and Abdul Razak Mariatulqabtiah
Pertanika Journal of Tropical Agricultural Science, Volume 46, Issue 2, May 2023
DOI: https://doi.org/10.47836/pjtas.46.2.17
Keywords: Avian, bird, meta-analysis, papillomavirus, virus
Published on: 16 May 2023
Papillomaviruses (PVs), double-stranded circular DNA viruses, typically cause regressing papillomas (warts) on mucosal or keratinized epithelia of a wide spectrum of species. The viruses largely infect mammals, whereby PV infections in humans, bovines, and rabbits are extensively reported. However, studies on non-mammalian PVs, particularly avian ones, are relatively lacking and worthy of investigation. This study performed a meta-analysis post-systematic review based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement guidelines to evaluate the occurrences of avian papillomaviruses (APVs) in bird species and effective materials used for virus detection. The electronic databases Science Direct, Medline via PubMed, and Google Scholar were used to search for the journal articles. Upon article eligibility check, the QUADAS-2 was employed to assess the data. Of 1139 records, 31 were eligible for full-text review, but only 9 were significant for the final review. The results showed that APVs are highly prevalent among the Fringillidae family, with a proportion of 81%, followed by Laridae (30%) and Anatidae (13%). The pooled prevalence of APV in tissue samples was 38%, while in swab samples was 13%. Only one study reported positive APV from fecal materials (0.4%); hence, the reliability comparison between these three samples was not performed. This study concluded that APVs are most prevalent in the Fringillidae bird family, while tissues are the most suitable biological samples for APV screening and should be considered as a single sample material. From epidemiology, knowledge of APV incidences and distribution may assist in controlling papillomatosis in bird species.
Araldi, R. P., Assaf, S., Carvalho, R. F., Carvalho, M. A. C. R., Souza, J. M., Magnelli, R. F., Módolo, D. G., Roperto, F. P., Stocco, R. C., & Beçak, W. (2017). Papillomaviruses: A systematic review. Genetic and Molecular Biology, 40(1), 1–21. https://doi.org/10.1590/1678-4685-GMB-2016-0128
Canuti, M., Munro, H. J., Robertson, G. J., Kroyer A. N. K., Roul, S., Ojkic, D., Whitney, H. G., & Lang, A. S. (2019). New insight into avian papillomavirus ecology and evolution from characterization of novel wild bird papillomaviruses. Frontiers in Microbiology, 10, 701. https://doi.org/10.3389/fmicb.2019.00701
Di Francesco, C. E., Profeta, F., Romanucci, M., Zuccarini, R., Altea, T., Malatesta, D., Salda, L. D., & Marsilio, F. (2019). Evidence of avian poxvirus and papillomavirus infection in Gyps fulvus in Italy. Archives of Virology, 164, 291–295. https://doi.org/10.1007/s00705-018-4055-8
Dom, P., Ducatelle, R., Charlier, G., & de Groot, P. (1993). Papillomavirus-like infections in canaries (Serinus canarius). Avian Pathology, 22(4), 797-803. https://doi.org/10.1080/03079459308418966
Doorbar, J., Egawa, N., Griffin, H., Kranjec, C., & Murakami, I. (2015). Human papillomavirus molecular biology and disease association. Review in Medical Virology, 25(S1), 2–23. https://doi.org/10.1002/rmv.1822
Gaynor, A. M., Fish, S., Duerr, R. S., Dela Cruz Jr., F. N., & Pesavento, P. A. (2015). Identification of a novel papillomavirus in a Northern Fulmar (Fulmarus glacialis) with viral production in cartilage. Veterinary Pathology, 52(3), 553–561. https://doi.org/10.1177/0300985814542812
Higgins, J. P., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. BMJ, 327(7414), 557–560. https://doi.org/10.1136/bmj.327.7414.557
Johne, R., Konrath, A., Krautwald-Junghanns, M. E., Kaleta, E. F., Gerlach, H., & Müller, H. (2002). Herpesviral, but no papovaviral sequences, are detected in cloacal papillomas of parrots. Archives of Virology, 147, 1869–1880. https://doi.org/10.1007/s00705-002-0858-7
Jones, A. L., Suárez-Bonnet, A., Mitchell, J. A., Ramirez, G. A., Stidworthy, M. F., & Priestnall, S. L. (2020). Avian papilloma and squamous cell carcinoma: A histopathological, immunohistochemical and virological study. Journal of Comparative Pathology, 175, 13–23. https://doi.org/10.1016/j.jcpa.2019.11.007
Katoh, H., Ogawa, H., Ohya, K., & Fukushi, H. (2010). A review of DNA viral infections in psittacine birds. Journal of Veterinary Medicine and Science, 72(9), 1099–1106. https://doi.org/10.1292/jvms.10-0022
King, A. M. Q., Adams, M. J., Carstens, E. B., & Lefkowitz, E. J. (Eds.) (2011). Virus taxonomy: Ninth report of the international committee on taxonomy of viruses. Elsevier.
Latimer, K. S., Rakich, P. M., Campagnoli, R. P., Ritchie, B. W., McGee, E. D., & Niagro, F. D. (1997). Investigation of parrot papillomavirus in cloacal and oral papillomas of psittacine birds. Veterinary Clinical Pathology, 26(4), 158–163. https://doi.org/10.1111/j.1939-165x.1997.tb00727.x
Lina, P. H., van Noord, M. J., & de Groot, F. G. (1973). Detection of virus in squamous papillomas of the wild bird species Fringilla coelebs. Journal of the National Cancer Institute, 50(2), 567–571. https://doi.org/10.1093/jnci/50.2.567
Literák, I., Šmíd, B., & Valíček, L. (2003). Papillomatosis in chaffinches (Fringilla coelebs) in the Czech Republic and Germany. Veterinary Medicine-Czech, 48(6), 169–173. https://doi.org/10.17221/5765-VETMED
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & The PRISMA Group (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLOS Medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097
Padzil, F., Halim, N. S. A., Najihah, N., Najian, A. B. N., Abu, J., Isa, N. M., Lau, H. Y., & Mariatulqabtiah, A. R. (2021). Evaluation of beak and feather disease virus, avian polyomavirus and avian papillomavirus of captives psittacine birds in Seri Kembangan, Selangor, Malaysia. Malaysian Journal of Microbiology, 17(3), 338-344. https://doi.org/10.21161/mjm.201062
Padzil, F., Mariatulqabtiah, A. R., Tan, W. S., Ho, K. L., Isa, N. M., Lau, H. Y., Abu, J., & Chuang, K. P. (2022). Loop-mediated isothermal amplification (LAMP) as a promising point-of-care diagnostic strategy in avian virus research. Animals, 12(1), 76. https://doi.org/10.3390/ani12010076
Pérez-Tris, J., Williams, R. A., Abel-Fernández, E., Barreiro, J., Conesa, J. J., Figuerola, J., Martinez-Martínez, M., Ramírez, A., & Benitez, L. (2011). A multiplex PCR for detection of poxvirus and papillomavirus in cutaneous warts from live birds and museum skins. Avian Diseases, 55(4), 545–553. https://doi.org/10.1637/9685-021411-Reg.1
Prosperi, A., Chiari, M., Zanoni, M., Gallina, L., Casà, G., Scagliarini, A., & Lavazza, A. (2016). Identification and characterization of Fringilla coelebs papillomavirus 1 (FcPV1) in free-living and captive birds in Italy. Journal of Wildlife Diseases, 52(3), 756–758. https://doi.org/10.7589/2015-09-254
Sironi, G., & Gallazzi, D. (1992). Papillomavirus infection in greenfinches (Carduelis chloris). Journal of Veterinary Medicine, 39(6), 454–458. https://doi.org/10.1111/j.1439-0450.1992.tb01193.x
Sun, L., & Feng, Y. (2019). Can results of meta-analysis with high heterogeneity provide any predictive values? European Heart Journal, 40(38), 3205. https://doi.org/10.1093/eurheartj/ehz530
Tachezy, R., Rector, A., Havelkova, M., Wollants, E., Fiten, P., Opdenakker, G., Jenson, B., Sundberg, J., & Van Ranst, M. (2002). Avian papillomaviruses: The parrot Psittacus erithacus papillomavirus (PePV) genome has a unique organization of the early protein region and is phylogenetically related to the chaffinch papillomavirus. BMC Microbiology, 2, 19. https://doi.org/10.1186/1471-2180-2-19
Terai, M., DeSalle, R., & Burk, R. D. (2002). Lack of canonical E6 and E7 open reading frames in bird papillomaviruses: Fringilla coelebs papillomavirus and Psittacus erithacus timneh papillomavirus. Journal of Virology, 76(19), 10020–10023. https://doi.org/10.1128/jvi.76.19.10020-10023.2002
Truchado, D. A., Moens, M., Callejas, S., Pérez-Tris, J., & Benítez, L. (2018). Genomic characterization of the first oral avian papillomavirus in a colony of breeding canaries (Serinus canaria). Veterinary Research Communications, 42(2), 111–120. https://doi.org/10.1007/s11259-018-9713-5
Truchado, D. A., Williams, R. A. J., Benítez, L. (2018). Natural history of avian papillomaviruses. Virus Research, 252, 58-67. https://doi.org/10.1016/j.virusres.2018.05.014
Van Doorslaer, K., Sidi, A. O., Zanier, K., Rybin, V., Deryckère, F., Rector, A., Burk, R. D., Lienau, E. K., van Ranst, M., & Travé, G. (2009). Identification of unusual E6 and E7 proteins within avian papillomaviruses: Cellular localization, biophysical characterization, and phylogenetic analysis. Journal of Virology, 83(17), 8759–8770. https://doi.org/10.1128/JVI.01777-08
Varsani, A., Kraberger, S., Jennings, S., Porzig, E. L., Julian, L., Massaro, M., Pollard, A., Ballard, G., & Ainley, D. G. (2014). A novel papillomavirus in Adélie penguin (Pygoscelis adeliae) faeces sampled at the Cape Crozier colony, Antarctica. Journal of General Virology, 95(6), 1352–1365. https://doi.org/10.1099/vir.0.064436-0
Williams, R. A. J., Tolf, C., & Waldenström, J. (2018). Molecular identification of papillomavirus in ducks. Scientific Report, 8, 9096. https://doi.org/10.1038/s41598-018-27373-6
Zanon, Z., Najihah, N., Abu, J., & Mariatulqabtiah, A. R. (2018). Prevalence of avian polyomavirus in psittacine birds in the Klang Valley. Pertanika Journal of Tropical Agriculture Science, 41(2), 917-924.
ISSN 1511-3701
e-ISSN 2231-8542